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Abstract

This thesis discusses the young fields of quantum pseudo-randomness and quantum
learning algorithms. We present techniques for derandomising algorithms to decrease
randomness resource requirements and improve efficiency. One key object in doing
this is a k-design, which is a distribution on the unitary group whose kth moments
match those of the unitarily invariant Haar measure. We show that for a natural model
of a random quantum circuit, the distribution of random circuits quickly converges
to a 2-design. We then present an efficient unitary k-design construction for any
k, provided the number of qubits n satisfies k = O(n/ log n). In doing this, we
provide an efficient construction of a quantum tensor product expander, which is a
generalisation of a quantum expander which in turn generalises classical expanders.
We then discuss applications of k-designs. We show that they can be used to improve
the efficiency of many existing algorithms and protocols and also find new applications
to derandomising large deviation bounds. In particular, we show that many large
deviation bound results for Haar random unitaries carry over to k-designs for k =
poly(n).

In the second part of the thesis, we present some learning and testing algorithms
for the Clifford group. We find an optimal algorithm for identifying an unknown
Clifford operation. We also give an algorithm to test if an unknown operation is close
to a Clifford or far from every Clifford.
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Chapter 1

Introduction

Landauer famously said that information is physical [Lan92]. A corollary of this is

that computation is a physical process. It is simply the evolution of a physical state,

governed by the laws of physics. A classical computer is therefore an information

processor where the physical evolution is restricted to that of classical physics. A

quantum computer is more general: quantum evolution is allowed. One might there-

fore reasonably expect that quantum computers are more powerful. It might be that

the extra possibilities allowed by quantum evolution allow states to be processed more

efficiently to speed up the computation. Determining which problems a quantum com-

puter can solve faster than a classical computer is the central problem in the theory

of quantum computation.

Significant progress has already been made in answering this question. Shor’s

algorithm [Sho94] shows that factoring of integers is possible in polynomial time on a

quantum computer. In contrast, it is not known if factoring is possible in polynomial

time on a classical computer. Also, Grover’s unstructured search algorithm [Gro97]

allows a marked item in an unsorted database to be found using only the square

root of the time required on a classical computer. Finding other algorithms and

provable separations between quantum and classical computation is an important

area of current research.

This thesis makes some progress towards finding such new algorithms. In classical
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computer science, randomness and pseudo-randomness have been key tools in the

development of new and faster algorithms. In the first part of this thesis, we discuss

applications and constructions of quantum analogues of these pseudo-random objects.

Whilst we do not come up with new algorithms based on these, we hope that in the

future the tools we build will find application in this area. In the second part of this

thesis, we discuss problems in the theory of machine learning, which is an area in

which quantum computers could outperform their classical counterparts.

A side theme in this thesis is the idea that computational complexity must be

considered in physical models. The converse of our opening statement is also true:

physical systems store and process information; they are computers. Therefore physi-

cal systems that could solve problems that are provably difficult do not exist in nature.

This can rule out models that provide too much computational power.

In Part I, we discuss quantum pseudo-randomness. We introduce the subject

in Chapter 2 and provide motivation from the classical computer science literature.

The main idea is to use pseudo-randomness instead of full randomness to decrease

the amount of randomness required. This is desirable in classical computing because

random bits are expensive to produce. In quantum computing random bits can be

obtained by measurement but uniformly random unitaries and states (formally defined

in Section 2.1) cannot be produced efficiently so pseudo-randomness is necessary if

efficiency is desired. In classical computing random bits are often saved by limiting

dependence, for example by using k-wise independent random variables. These are

variables where the distribution of any k variables is the same as for fully independent

random variables but dependencies become apparent when observing more than k of

the variables. We discuss a quantum analogue of this known as a k-design.

In Chapter 3 we show that short random quantum circuits (see Section 1.1 for

background on quantum circuits) are 2-designs, giving an efficient method for pro-

ducing a 2-design. Then in Chapter 4 we provide an efficient k-design construction

for all k, giving the first construction for k > 2. In order to do this, we present an

efficient construction of a quantum k-tensor product expander, which is a quantum
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analogue of a classical tensor product expander which in turn is a generalisation of

the standard expander used in classical computer science. We then summarise known

applications of k-designs in Chapter 5 as well as providing our own to show that k-

designs exhibit measure concentration which in some cases is almost as strong as for

uniformly random unitaries.

In Part II we turn to problems in learning theory. In particular, we consider the

problem of identifying a given black box unitary with as few queries as possible. We

find an algorithm with optimal asymptotic query complexity to identify an unknown

unitary from the Clifford group (defined in Chapter 6). We also show how this can

be done if the unitary only approximately implements a Clifford and we also present

a testing algorithm to determine if a given operation is close to a Clifford or far from

every Clifford.

1.1 Brief Introduction to Quantum Mechanics

We now briefly mention some key concepts in quantum mechanics and define some

notation. For a more complete introduction see [NC00].

The state of a d-dimensional quantum system is represented by a vector in the

complex space C
d. If d = 2, we call the system a qubit and often we will take d = 2n

and say the system has n qubits.

We will normally use Dirac notation for quantum states. We write column vectors

as |ψ〉, with the associated conjugate row vector as 〈ψ|. The inner product between

two states is written as 〈ψ1|ψ2〉. We will write ψ for the projector |ψ〉〈ψ|. States can

also be probabilistic mixtures of pure states. If the state is |ψi〉 with probability pi

then it has density matrix
∑

i pi|ψi〉〈ψi|.
It is often convenient to break the space up into different components, for example

the system and its environment. Mathematically, systems are combined by using the

tensor product. The combined state of system A in state |ψA〉 and system B in state

|ψB〉 is written |ψA〉 ⊗ |ψB〉. This leads to the phenomenon of entanglement, which is

when the combined state cannot be written in this product form. For example, the
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state 1√
2

(|0A〉 ⊗ |0B〉 + |1A〉 ⊗ |1B〉) cannot be written in the product form |ψA〉⊗|ψB〉
and so is entangled. To find the state of a subsystem A from a density matrix ρAB, we

take the partial trace. Write ρAB =
∑

ijkl ρijkl|iA〉〈jA| ⊗ |kB〉〈lB |. Then the reduced

state is ρA = trB ρAB =
∑

ijk ρijkk|iA〉〈jA|.
Measurement of a quantum system can be written mathematically in terms of

a POVM (positive operator valued measure). This is a set of positive semi-definite

operators Pi such that
∑

i Pi = I. Then the measurement outcomes are the labels i

and outcome i occurs with probability trPiρ if the state being measured is ρ.

The evolution of a closed quantum system is unitary. That is, the quantum state at

a later time t is related by a unitary to the initial quantum state: ρt = Utρ0U
†
t . If the

system of interest is part of some larger system then the dynamics need not be unitary.

The most general form of evolution can be written in the Kraus decomposition: ρt =
∑

iAiρ0A
†
i where Ai are any operators normalised so that

∑

iA
†
iAi = I.

Finally we mention that it is often convenient to think of unitary evolution as

a quantum circuit, built up of smaller elementary unitary gates. This is in direct

analogy to the use of circuits in classical computing. Classically, a NAND gate suffices

to produce any other gate so all classical circuits can be made up of just NAND gates.

Similarly, there exist sets of unitary gates from which any unitary can be built. An

example is the following three gates:

H =
1√
2





1 1

1 −1



 Rπ/4 =





1 0

0 eiπ/4





CNOT =

















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

















.

We often seek to build a family of circuits that act on n qubits for all n, where the

gates are chosen from some elementary set, such as that above. We say that the
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circuits are efficient if the number of gates grows only polynomially with n.

1.2 Preliminaries

Here we define some notation and concepts that are used throughout this thesis.

1.2.1 Pauli Matrices

We will often use the Pauli matrices:

σ0 = σI =





1 0

0 1



 σ1 = σx =





0 1

1 0





σ2 = σy =





0 −i
i 0



 σ3 = σz =





1 0

0 −1



 (1.2.1)

We can extend these to matrices on n qubits by taking tensor products. Let p ∈
{0, 1, 2, 3}n and σp = σp1 ⊗ σp2 ⊗ · · · ⊗ σpn where pi is the value at the ith position in

the string p. We will sometimes use the alternative notation of p ∈ {I, x, y, z}n. We

will refer to σp as Pauli matrices on n qubits. There are 4n Pauli matrices and they

are orthogonal i.e. trσpσq = 2nδpq. Note also that σ2
p = σ0, the identity. Also, Pauli

matrices either commute or anticommute.

The Pauli matrices form an orthogonal basis for matrices in C
2n×2n

. Therefore

any such matrix A can be written in the form
∑

p γ(p)σp, with γ(p) = 1
2n trσpA.

Sometimes we will choose a different normalisation for the Pauli coefficients γ(p) but

will make this clear from the context.

1.2.2 The Symmetric Group and Permutation Operators

The symmetric group is the group of all permutations. Let SN be the symmetric

group on N objects. Then for π ∈ SN define the corresponding permutation operator

B(π) :=

N
∑

i=1

|π(i)〉〈i| (1.2.2)
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to be the matrix that permutes the basis states |1〉, . . . , |N〉 according to π.

On the other hand, if we have k N -dimensional systems then for π ∈ Sk define

the subsystem permutation operator S(π) by

S(π) :=

N
∑

n1=1

· · ·
N
∑

nk=1

|nπ−1(1), . . . nπ−1(k)〉〈n1, . . . , nk|. (1.2.3)

Now we present two useful lemmas about subsystem permutation operators.

Lemma 1.2.1. Let C be a cycle of length c in Sc. Then

tr (C (A1 ⊗A2 ⊗ . . .⊗Ac)) = tr
(

AC(1)AC◦2(1)AC◦3(1) . . . A1

)

.

Proof. We have

tr(C(A1 ⊗A2 ⊗ . . .⊗Ac))

=
∑

i1,i2,...,ic

〈i1i2 . . . ic|C (A1 ⊗A2 ⊗ . . .⊗Ac) |i1i2 . . . ic〉

=
∑

i1,i2,...,ic

〈i1|AC(1)|iC(1)〉〈i2|AC(2)|iC(2)〉 . . . 〈ic|AC(c)|iC(c)〉

=
∑

i1,i2,...,ic

〈i1|AC(1)|iC(1)〉〈iC(1)|AC◦2(1)|iC◦2(1)〉 . . . 〈iC◦c−1(1)|A1|i1〉

since C◦c(1) = 1. Evaluate the sum using the resolution of the identity to get the

result.

A simple example of this Lemma is that

tr(F(A⊗B)) = trAB (1.2.4)

where F is the swap operator.

We also work out the Pauli expansion of the swap operator. To stress that this

result does not depend on the choice of orthogonal basis we prove it in full generality.
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Lemma 1.2.2. The swap operator F on two d-dimensional systems can be written

as
1

d

∑

p

σp ⊗ σp.

where {σp} form a Hermitian orthogonal basis with trσ2
p = d.

Proof. Expand F in the basis and use Lemma 1.2.1:

tr ((σp ⊗ σq)F) = trσpσq

=











d p = q

0 otherwise.

The given sum has the correct coefficients in the basis therefore 1
d

∑

p σp⊗σp = F .

1.2.3 Asymptotic Notation

We will use the following standard asymptotic notation.

Definition 1.2.3. f(n) = O(g(n)) if there exists c, n0 > 0 such that 0 ≤ f(n) ≤ cg(n)

for all n ≥ n0.

Definition 1.2.4. f(n) = Ω(g(n)) if there exists c, n0 > 0 such that f(n) ≥ cg(n) ≥ 0

for all n ≥ n0.

Definition 1.2.5. f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)).

Definition 1.2.6. f(n) = o(g(n)) if limn→∞ f(n)/g(n) = 0.

1.2.4 Norms and Superoperator Norms

Norms

We will make heavy use of Schatten p-norms:
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Definition 1.2.7. For A a d× d matrix, the Schatten p-norm is given by

||A||p =

(

d
∑

i=1

σpi

)1/p

(1.2.5)

where σi are the singular values of A.

In particular, ||A||1 =
∑d

i=1 σi = tr
√
A†A, ||A||2 =

√

∑d
i=1 σ

2
i =

√
trA†A and

||A||∞ = maxi σi.

These norms satisfy the following simple relationships:

||A||2 ≤ ||A||1 ≤
√
d||A||2 (1.2.6)

||A||∞ ≤ ||A||1 ≤ d||A||∞ (1.2.7)

||A||∞ ≤ ||A||2 ≤
√
d||A||∞. (1.2.8)

Superoperator Norms

Just as state norms can be used to bound the distinguishability of states, superoper-

ator norms bound how easy it is to tell different superoperators apart. We start with

the 1-norm:

Definition 1.2.8. The 1-norm of a superoperator E is given by

||E||1→1 = sup
X 6=0

||E(X)||1
||X||1

.

The main problem with this definition is that the 1-norm is not stable under

tensoring with the identity i.e. there exist channels with ||E ⊗ idd||1→1 > ||E||1→1,

where idd is the identity channel on d dimensions. This means that some channels

are easier to distinguish by inputting entangled states. If the norm is to measure

the distinguishability of channels it should take this into account. To overcome this

problem, the diamond norm is defined:
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Definition 1.2.9 ([KSV02]). The diamond norm of a superoperator E is given by

||E||⋄ = sup
d

||E ⊗ idd||1→1 = sup
d

sup
X 6=0

||(E ⊗ idd)X||1
||X||1

.

If follows immediately that ||E||1→1 ≤ ||E||⋄. Also it is shown in [KSV02] that the

diamond norm satisfies ||E ⊗ idd||⋄ = ||E||⋄ for all channels E and dimensions d and

that the dimension d in the supremum can be taken to be the same as the dimension

of the system E acts on. Operationally, the diamond norm of the difference between

two quantum operations tells us the largest possible probability of distinguishing the

two operations if we are allowed to have them act on part of an arbitrary, possibly

entangled, state.

We will also use the 2-norm:

Definition 1.2.10. The 2-norm of a superoperator E is given by

||E||2→2 = sup
X 6=0

||E(X)||2
||X||2

.

In [van02] Appendix C, the following relationships between the superoperator

norms are proven:

||E||2→2 ≤
√
d||E||1→1 (1.2.9)

||E||1→1 ≤
√
d||E||2→2 (1.2.10)

||E||⋄ ≤ d||E||1→1 (1.2.11)

||E||⋄ ≤ d||E||2→2. (1.2.12)

1.3 Previous Publications

The majority of this thesis has been published previously and some is work in collab-

oration.

Chapter 3 is joint work with Aram Harrow and is available as “Random Quantum

Circuits are Approximate 2-designs”, Communications in Mathematical Physics, Vol-
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Chapter 4 is also joint work with Aram Harrow and is available as “Efficient

Quantum Tensor Product Expanders and k-Designs”, Proceedings of RANDOM 2009,

LNCS, Volume 5687, Pages 548-561. It is also available as a pre-print: arXiv:0811.2597.

Chapter 5 from Section 5.2 onwards is available as “Large deviation bounds for

k-designs”, Proceedings of the Royal Society A, Volume 465, Number 2111, Pages

3289-3308. It is also available as a pre-print: arXiv:0903.5236.

Chapter 6 is available as “Learning and Testing Algorithms for the Clifford Group”,

Physical Review A, Volume 80, Number 5, Page 052314. It is also available as a pre-

print: arXiv:0907.2833.
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Part I

Quantum Pseudo-randomness
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Chapter 2

Introduction to Quantum

Pseudo-randomness

Randomness is an important resource in both classical and quantum computing. It

has applications in virtually all areas of computer science, including algorithms, cryp-

tography and networking. Randomness can improve efficiency or, as in the case of

cryptography, allow us to perform tasks that we would not be able to do with deter-

ministic resources.

An example of an algorithm where a randomised algorithm is faster than any

known deterministic algorithm is polynomial identity testing. Here, the task is to

determine if two polynomials are identically equal. By evaluating the polynomials on

random inputs, identity testing can be done in polynomial time whereas no polynomial

time deterministic algorithm is known.

Also, a commonly used randomised algorithm is that of randomised quicksort. In

quicksort, a pivot element is chosen and elements smaller than this are placed to the

left and larger elements to the right. Then these two parts are sorted recursively.

However, the choice of pivot element greatly affects the run-time of the algorithm. If

chosen poorly (for example so that there is only one element smaller than the pivot),

the algorithm runs in O(n2) time. If chosen well, the algorithm runs inO(n log n) time.

Choosing the pivot element randomly will be a good choice on average, giving expected
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run-time O(n log n) [MR95]. However, this run-time can be achieved deterministically

using deterministic median finding [BFP+72] but in practice the randomised method

is more efficient.

As another example, many primality testing algorithms are randomised because of

their simplicity, even though a deterministic polynomial-time algorithm is now known.

Also, in the field of communication complexity, separations between deterministic and

randomised algorithms can be proven. The deterministic complexity of evaluating the

equality function (to determine if Alice and Bob’s strings are equal) is Θ(n), whereas

the randomised complexity is Θ(log n) [KN96]. As yet another example of randomness

in classical computer science, in networking a random delay is often inserted after a

collision so the nodes wait different times so are likely to avoid another collision.

In this part, we seek to extend some of these gains of using randomness to quan-

tum computing. We wish to find applications of randomness to find new quantum

algorithms and constructions.

Besides the computer science applications, there are also physical reasons for

studying randomness in quantum mechanics. Some systems can be modelled as inter-

acting randomly and it is interesting to ask what the limiting state (or distribution on

states) is for such a system. Also of great interest is how quickly the system reaches

this stationary state. If the time taken grows too quickly with the size of the system

(for example, exponentially) then for any system apart from the most trivial, the sta-

tionary state will never be reached and will not be seen in physical systems. However,

if the time is small (for example, a small polynomial), then the stationary state can

be reached quickly and will be observed in real systems. It is in problems like this

that physicists must consider the computer science aspects of their models. We study

problems of this kind in Chapters 3 and 5.

2.1 Random Unitaries

In quantum computing, operations are unitary gates and randomness is often used

in the form of random unitary operations. Random unitaries have algorithmic uses

16



(e.g. [Sen05]), cryptographic applications (e.g. [AS04, HLSW04]) and applications to

fundamental quantum protocols (e.g. [BHL+05, HHL04]). For information-theoretic

applications, it is often convenient to use unitary matrices drawn from the uniform

distribution on the unitary group, also known as the Haar measure. This measure is

the unique unitarily invariant measure i.e. the only measure dU on the unitary group

U(d) where
∫

U(d) f(U)dU =
∫

U(d) f(UV )dU for all functions f and unitaries V . For

random states, we write the unitarily invariant measure on d-dimensional states as

dψ. This can be thought of as a Haar distributed unitary applied to any fixed pure

state. It is also known as the Fubini-Study metric.

However, in both classical and quantum computing, obtaining random bits is often

expensive, and so it is often desirable to minimise their use. For example, in classical

computing, expanders (discussed in Chapter 4) and k-wise independent functions (see

Section 2.2) have been developed for this purpose and have found wide application.

We will spend a great deal of time exploring quantum analogues of these: quantum

expanders and k-designs.

In addition to randomness being expensive, there is an even more pressing prob-

lem when using random unitaries and states. An n-qubit unitary is defined by 4n real

parameters, and so cannot even be approximated efficiently using a subexponential

amount of time or randomness. So any application that requires a random unitary

cannot be efficient. Instead, we will seek to construct efficient pseudo-random en-

sembles of unitaries which resemble the Haar measure for certain applications. For

example, a k-design (often referred to as a t-design, or a (k, k)-design), as mentioned

above, is a distribution on unitaries which matches the first k moments of the Haar

distribution. k-designs have found many uses which are explored in Chapter 5.

In Section 2.2, we formally define k-designs and summarise known constructions.

Then in Chapter 3 we show that, for a natural model of a random quantum circuit, the

distribution quickly converges to that of a 2-design. This gives an efficient approximate

2-design construction and also has physical applications. In Chapter 4, we provide an

efficient construction of a unitary k-design for any k (although there are restrictions
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on the dimension, see later). Then in Chapter 5, we discuss applications of designs,

including to derandomising constructions that use large deviation bounds.

Parts of this chapter have been published previously in [HL09b, HL09a, Low09a]

and parts are joint work with Aram Harrow.

2.2 k-designs

A unitary k-design is a distribution of unitaries that gives the same expectations

of polynomials of degree at most k as the Haar measure. This is just like Gaus-

sian quadrature, where integrals of polynomials are calculated by sums. Gaussian

quadrature says that there exist sample points {xi} and weights {wi} so that for all

polynomials f of degree at most 2b− 1,

b
∑

i=1

wif(xi) =

∫ q

p
dxf(x) (2.2.1)

for some fixed limits p and q. This allows the integrals to be calculated much more

efficiently. A unitary k-design is the same, except the polynomial is on elements of

unitary matrices from the unitary group rather than numbers on the real line. The k

refers to the degree of the polynomial. We will also discuss state designs, where the

function is on coefficients of states rather than unitaries.

2.2.1 k-wise Independence

k-designs can also be thought of as a quantum analogue of k-wise independence. A

sequence of random variables X1, . . . ,Xn is k-wise independent if, for any subset of

size j ≤ k,

P(Xi1 = xi1, . . . ,Xij = xij) = P(Xi1 = xi1) . . . P(Xij = xij). (2.2.2)

18



As a simple example of how this can save randomness, consider the set

{000, 011, 101, 110}. (2.2.3)

If an element is chosen uniformly at random from this set, the probability distribution

of the values of any two bits is the same as if all three bits were chosen independently.

This is therefore a 2-wise independent set, and saves one bit of randomness. In general,

if k ≪ n, an exponential saving in randomness can be made in this way. Efficient

constructions of exactly k-wise independent sets are known [ABI86] and more efficient

approximate constructions are given in [NN90].

A related concept is that of k-wise independent permutations. These are sets of

permutations with the property that, when a permutation is chosen randomly from

this set and applied to n points, the distribution of the positions of any k points is

the same as if a uniformly random permutation was applied. For example, a random

cyclic shift is a 1-wise independent permutation. Again, an exponential saving of

randomness is possible [KNR09].

We seek to construct quantum k-designs to achieve a similar saving of randomness

for quantum algorithms. We now formally define k-designs.

2.2.2 Exact Designs

We will use the following notation to distinguish the measure we are using. Write E

for the expectation with EU∼ν meaning the expectation when U is chosen from the

measure ν. If the measure is the Haar measure in dimension d we will write EU∼U(d).

We use the same subscripts for probabilities so PU∼U(d) denotes the probability when

U is chosen from the Haar measure, etc.. When considering random states, we will

write E|ψ〉∼S(d), etc..
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State designs

A k-design is an ensemble of states such that, when one state is chosen from the

ensemble and copied k times, it is indistinguishable from a uniformly random state.

The state k-design definition we use is due to Ambainis and Emerson [AE07]:

Definition 2.2.1 ([AE07], Definition 1). An ensemble of quantum states ν = {pi, |ψi〉}
is a state k-design if

E|ψ〉∼ν
[

(|ψ〉〈ψ|)⊗k
]

= E|ψ〉∼S(d)

[

(|ψ〉〈ψ|)⊗k
]

(2.2.4)

We can evaluate the integral on the right hand side:

Lemma 2.2.2.
∫

ψ
(|ψ〉〈ψ|)⊗k dψ =

Π+k
(k+d−1

k

) (2.2.5)

where Π+k is the projector onto the symmetric subspace of k d-dimensional spaces.

Proof. The standard proof (see e.g. [GW98] or [BBD+97]) involves showing that
∫

ψ (|ψ〉〈ψ|)⊗k dψ commutes with all elements of an irreducible representation (irrep)

of the unitary group that acts on the symmetric subspace so by Schur’s lemma must

be proportional to the projector onto the symmetric subspace. However, here we give

an alternative proof that introduces a technique we will use later.

By the unitary invariance of the Haar measure,
∫

ψ (|ψ〉〈ψ|)⊗k dψ commutes with

U⊗k for all unitaries U . By Schur-Weyl duality (see e.g. [GW98]), this implies that

the integral is a linear combination of subsystem permutation operators. Therefore

we have
∫

ψ
(|ψ〉〈ψ|)⊗k dψ =

∑

π∈Sk

απS(π). (2.2.6)

However, the integral is invariant under permutations so απ must be the same for all

permutations π. Using Π+k = 1
k!

∑

π∈Sk
S(π) and finding the normalisation by taking

the trace (the dimension of the symmetric subspace is
(

k+d−1
k

)

) proves the result.

We will also state equivalent definitions of designs in terms of polynomials of
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matrix elements of the unitary or coefficients of the state. First we must define what

we mean by the degree of a polynomial:

Definition 2.2.3. A monomial in elements of a matrix U or state |ψ〉 is of degree

(k1, k2) if it contains k1 conjugated elements and k2 unconjugated elements. We call

it balanced if k1 = k2 and will simply say a balanced monomial has degree k if it is

degree (k, k). A balanced polynomial is of degree k if it is a sum of balanced monomials

of degree at most k, with at least one monomial with degree equal to k.

So that, in this definition, UpqU
∗
rs is a balanced monomial of degree (1, 1) and

UpqUrs is a monomial of degree (2, 0) and is unbalanced. For the state |ψ〉 =
∑

i αi|i〉,
αiα

∗
j is a balanced monomial of degree (1, 1).

We can then define state k-designs in terms of monomials:

Definition 2.2.4 ([AE07], Definition 3). An ensemble of quantum states ν is a state

k-design if, for all balanced monomials M of degree at most k,

E|ψ〉∼νM(|ψ〉) = E|ψ〉∼S(d)M(|ψ〉) (2.2.7)

This is an equivalent definition to Definition 2.2.1:

Lemma 2.2.5 ([AE07], Theorem 5). The state design definitions 2.2.1 and 2.2.4 are

equivalent.

Proof. Firstly, we only need to prove the result for M of degree exactly k, since by

partial tracing this implies the result for any smaller k.

Each entry in the matrix E|ψ〉∼ν
[

(|ψ〉〈ψ|)⊗k
]

is the expectation of a monomial of

degree k, with the state chosen from the design. Further, the corresponding entry

in E|ψ〉∼S(d)

[

(|ψ〉〈ψ|)⊗k
]

is the expectation of the same monomial but with the state

chosen from the Haar measure. If the ensemble of states satisfies Definition 2.2.4 then

these are equal, so the ensemble also satisfies Definition 2.2.1.

On the other hand, for every balanced monomial of degree k, there is an entry

in E|ψ〉∼ν
[

(|ψ〉〈ψ|)⊗k
]

equal to its expectation. Therefore, if the ensemble of states

satisfies Definition 2.2.1 then it also satisfies Definition 2.2.4.
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Unitary designs

Consider having k d-dimensional systems in any initial state. A unitary k-design is

an ensemble of unitaries such that when a unitary is randomly selected from it and

applied to each of the k systems, the overall state is indistinguishable from choosing

a uniformly random unitary. This can be seen as a generalisation of state designs in

that any column of a unitary k-design is a state k-design. Formally, we have:

Definition 2.2.6. Let ν be an ensemble of unitary operators. Define

Gν(ρ) = EU∼ν
[

U⊗kρ(U †)⊗k
]

(2.2.8)

and

GH(ρ) = EU∼U(d)

[

U⊗kρ(U †)⊗k
]

(2.2.9)

Then the ensemble is a unitary k-design if Gν(ρ) = GH(ρ) for all dk × dk matrices ρ

(not necessarily physical states).

For convenience we have defined this for all matrices ρ although it is equivalent

to only require equality for physical states, since all matrices can be obtained from

linear combinations of physical states.

Like state designs, unitary designs can also be defined in terms of polynomials:

Definition 2.2.7 ([DCEL06]). ν is a unitary k-design if, for all balanced monomials

M of degree k,

EU∼νM(U) = EU∼U(d)M(U). (2.2.10)

Again, these definitions are equivalent:

Lemma 2.2.8. The unitary design definitions 2.2.6 and 2.2.7 are equivalent.

Proof. The proof is very similar to the state design case. Again, we only consider

monomials of degree k since by partial tracing this implies the result for smaller k.

Consider matrices ρ of the form |i1, i2, . . . , ik〉〈j1, j2, . . . , jk| in Definition 2.2.6.

Then each element of U⊗kρ
(

U †)⊗k is a balanced monomial of degree k and, for some
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choice of indices in |i1, i2, . . . , ik〉〈j1, j2, . . . , jk|, each balanced monomial of degree k

appears.

2.2.3 Approximate k-designs

While exact designs have desirable properties, it is often much easier to construct

approximate designs which, for many applications, are sufficient. Also, approximate

designs can have fewer unitaries than exact designs. For example, it was shown in

[AMTd00] that 22n unitaries are necessary and sufficient for an exact unitary 1-design.

However, an approximate 1-design can be implemented with only 2n+o(n) unitaries

which gives almost a factor of 2 saving in random bits.

Approximate state designs

Our approximate state design definition is as follows:

Definition 2.2.9. ν is an ǫ-approximate state k-design if

∣

∣

∣

∣

∣

∣E|ψ〉∼ν
[

(|ψ〉〈ψ|)⊗k
]

− E|ψ〉∼S(d)

[

(|ψ〉〈ψ|)⊗k
]∣

∣

∣

∣

∣

∣

∞
≤ ǫ
(k+d−1

k

) . (2.2.11)

(

k+d−1
k

)

appears because it is the dimension of the symmetric subspace. In [AE07],

a similar definition was proposed but with the additional requirement that the en-

semble also forms a 1-design (exactly), i.e.

E|ψ〉∼ν |ψ〉〈ψ| = E|ψ〉∼S(d)|ψ〉〈ψ|

This requirement was necessary there only so that a suitably normalised version of

the ensemble would form a POVM. We will not use it.

By taking the partial trace one can show that a k-design is a k′-design for k′ ≤ k.

Thus approximate k-designs are always at least approximate 1-designs.

23



Approximate unitary designs

We have many choices to make when defining an approximate design. Here we give

four definitions which are convenient in different contexts. In Lemma 2.2.14 we show

that they are all equivalent, up to polynomial dimension factors.

If the unitary design is considered a quantum channel that applies a random

unitary from the distribution to the input, then a relevant measure is the diamond

norm difference between the approximate design and an exact design. Because the

diamond norm is related to the distinguishability of channels, having a low diamond

norm distance means that it is difficult to detect that an approximate design was

given rather than exact. One approximate design definition is therefore:

Definition 2.2.10 (DIAMOND1, See Chapter 3). ν is an ǫ-approximate unitary k-

design if

||Gν − GH ||⋄ ≤ ǫ, (2.2.12)

where Gν and GH are defined in Definition 2.2.6.

In [DCEL06], they consider approximate twirling, which is implemented using an

approximate 2-design. They give an alternative definition of closeness which is more

convenient for this application:

Definition 2.2.11 (TWIRL, [DCEL06]). ν is an ǫ-approximate twirl if

max
Λ

∣

∣

∣

∣

∣

∣
EU∼νU †Λ(UρU †)U − EU∼U(d)U

†Λ(UρU †)U
∣

∣

∣

∣

∣

∣

⋄
≤ ǫ

d2
. (2.2.13)

The maximisation is over channels Λ and d is the dimension.

In Chapter 4, unitary designs are constructed from quantum tensor product ex-

panders. A quantum k-TPE is defined as an ensemble ν of unitaries such that

∥

∥

∥
EU∼ν

[

U⊗k,k
]

− EU∼U(d)

[

U⊗k,k
]∥

∥

∥

∞
≤ λ (2.2.14)

1We name the definitions to help distinguish them
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for λ < 1 and U⊗k,k = U⊗k ⊗ (U∗)⊗k (the motivation for this definition is explained

in Chapter 4). From this a natural k-design definition follows:

Definition 2.2.12 (TRACE, See Chapter 4). ν is an ǫ-approximate unitary k-design

if
∥

∥

∥EU∼ν
[

U⊗k,k
]

− EU∼U(d)

[

U⊗k,k
]∥

∥

∥

1
≤ ǫ. (2.2.15)

In Theorem 4.1.3 we prove the simple result that a unitary design can be con-

structed by iterating the TPE.

We will also need a definition in terms of monomials:

Definition 2.2.13 (MONOMIAL, See Chapter 5). ν is an ǫ-approximate unitary

k-design if, for all balanced monomials M of degree ≤ k,

∣

∣EU∼νM(U) − EU∼U(d)M(U)
∣

∣ ≤ ǫ

dk
(2.2.16)

We would now like to show that all these definitions are equivalent. By equivalent,

we mean that, if ν is an ǫ-approximate unitary design by one definition, then it is an

ǫ′-approximate unitary design by any other definition, where ǫ′ = poly(dk)ǫ.

Lemma 2.2.14. Definitions 2.2.10 (DIAMOND), 2.2.12 (TRACE) and 2.2.13 (MONO-

MIAL) are all equivalent. Also Definition 2.2.11 (TWIRL) is equivalent to the other

definitions for an approximate 2-design only.

Proof. To prove this, we will consider yet another possible definition (OPERATOR-

2-NORM):

||Gν − GH ||2→2 ≤ ǫ. (2.2.17)

Note that this is equivalent to

∥

∥

∥
EU∼ν[U⊗k,k] − EU∼U(d)[U

⊗k,k]
∥

∥

∥

∞
≤ ǫ (2.2.18)

which is the same as Definition 2.2.12 (TRACE) except the norm is the ∞-norm rather

than the 1-norm. We shall prove that the other k-design definitions are equivalent
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to this. We then show that Definition 2.2.11 (TWIRL) is equivalent to Definition

2.2.13 (MONOMIAL) for k = 2. We use notation A
s−→ B to mean that if ν is an

ǫ-approximate unitary k-design according to definition A then it is a sǫ-approximate

unitary k-design according to definition B. If s = 1 we omit the superscript.

A diagram showing the different parts to the proof is given in Figure 2.1. We

remark that direction 2 is unneeded but is included since it provides tighter bounds

and has a simple proof.

OPERATOR-2-NORM DIAMOND

MONOMIAL TRACE

TWIRL

d
k

d
k

d
k/2

d
2k

1

23d
k

5

4

6

7
8

d
5

Figure 2.1: A diagram showing the different parts of the proof of Lemma 2.2.14. The
dotted arrows show the correspondence is only for k = 2. The circled digits refer to
the enumerated items below and the factors by the arrows indicate the precision lost
in the approximation when converting between the definitions.

1. OPERATOR-2-NORM
d2k

−−→ TRACE:

Use the equivalence between Equations 2.2.17 and 2.2.18 and that

∥

∥

∥
EU∼ν [U⊗k,k] − EU∼U(N)[U

⊗k,k]
∥

∥

∥

1
≤ d2k

∥

∥

∥
EU∼ν[U⊗k,k] − EU∼U(d)[U

⊗k,k]
∥

∥

∥

∞
.

2. TRACE → OPERATOR-2-NORM:

Use

∥

∥

∥
EU∼ν [U

⊗k,k] − EU∼U(d)[U
⊗k,k]

∥

∥

∥

∞
≤
∥

∥

∥
EU∼ν [U

⊗k,k] − EU∼U(d)[U
⊗k,k]

∥

∥

∥

1
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and the equivalence between Equations 2.2.17 and 2.2.18.

3. MONOMIAL
dk

−→ OPERATOR-2-NORM:

Choose any ρ ∈ C
dk×dk

and write it as ρ =
∑

ij ρij|i〉〈j|. Then

‖Gν(ρ) − GH(ρ)‖2 ≤
∑

ij

|ρij| ‖Gν(|i〉〈j|) − GH(|i〉〈j|)‖2

=
∑

ij

|ρij|
√

∑

kl

|(Gν(|i〉〈j|) − GH(|i〉〈j|))kl|2

using the fact that the 2-norm squared is the sum of the squares of the matrix

elements. Now, we have a bound on the matrix elements of Gν(|i〉〈j|)−GH (|i〉〈j|)
from Definition 2.2.13 (MONOMIAL):

| (Gν(|i〉〈j|) − GH(|i〉〈j|))kl | ≤
ǫ

dk

so

‖Gν(ρ) − GH(ρ)‖2 ≤ ǫ
∑

ij

|ρij|

≤ dkǫ||ρ||2.

4. OPERATOR-2-NORM
dk

−→ DIAMOND:

This follows from the superoperator norm relationship given in Eqn. 1.2.12.

5. DIAMOND
dk/2

−−→ OPERATOR-2-NORM:

This uses the operator norm inequalities ||φ||1→1 ≤ ||φ||⋄ and Eqn. 1.2.9.

6. TRACE
dk

−→ MONOMIAL:

Let M be a balanced monomial of degree k and write it as

M = Up1q1 . . . UpkqkU
∗
r1s1 . . . U

∗
rksk

.
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Then let M̂ = |p1〉〈q1| ⊗ . . .⊗ |pk〉〈qk| ⊗ |r1〉〈s1| ⊗ . . .⊗ |rk〉〈sk|. Then M(U) =

tr M̂U⊗k,k and ‖M̂‖∞ = 1. Now we use the fact that for any operator A

‖A‖1 = max
B

{trAB : ‖B‖∞ ≤ 1} (2.2.19)

to rewrite the TRACE definition:

‖EU∼ν [U⊗k,k]−EU∼U(d)[U
⊗k,k]‖1 =

max
B

{

tr
(

EU∼ν[U
⊗k,k] − EU∼U(d)[U

⊗k,k]
)

B : ‖B‖∞ ≤ 1
}

≥
∣

∣

∣
tr
(

EU∼ν [U
⊗k,k] − EU∼U(d)[U

⊗k,k]
)

M̂
∣

∣

∣

=
∣

∣EU∼νM(U) − EU∼U(d)M(U)
∣

∣ .

7. MONOMIAL
d5−→ TWIRL (for k = 2):

Write Λ(ρ) in the Kraus decomposition as

Λ(ρ) =
∑

k

AkρA
†
k (2.2.20)

with
∑

k

A†
kAk = I. (2.2.21)

Let ΛU (ρ) =
∑

k U
†AkUρU †A†

kU . Then the p, q matrix element of ΛU (ρ) is

∑

krstuij

ρijUsiUuqU
∗
rpU

∗
tjAkrsA

∗
kut. (2.2.22)

From Definition 2.2.13 (MONOMIAL) we have that

∣

∣(EU∼ν − EU∼U(d))UsiUuqU
∗
rpU

∗
tj

∣

∣ ≤ ǫ/d2
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(treating expectation as an operator). This implies that

∣

∣

∣

∣

∣

∣

∑

krstuij

ρijAkrsA
∗
kut(EU∼ν − EU∼U(d))UsiUuqU

∗
rpU

∗
tj

∣

∣

∣

∣

∣

∣

≤
∑

krstuij

|ρijAkrsA∗
kut|ǫ/d2.

(2.2.23)

Now,
∑

rs |Akrs| ≤ d||Ak||2 and
∑

ij |ρij | ≤ d||ρ||2 and, taking the trace of the

normalisation condition Eqn. 2.2.21 we find

d =
∑

k

trA†
kAk =

∑

k

||Ak||22.

So we find Eqn. 2.2.23 is upper bounded by

ǫ

d2
d||ρ||2

∑

k

d2||Ak||22 ≤ ǫd2||ρ||2.

Using the fact that the 2-norm squared is the sum of the squares of the matrix

elements we find that

||EU∼νΛU (ρ) − EU∼U(d)ΛU (ρ)||2 ≤ ǫd4||ρ||2.

Using || · ||⋄ ≤ d|| · ||2 (Eqn. 1.2.12) we prove the result.

8. TWIRL → MONOMIAL for k = 2:

Let Aσ = |p〉〈q|+σ|r〉〈s| where σ ∈ {+1,−1,+i,−i}. Let B = I−|q〉〈q|−|s〉〈s|.
Then Aσ andB are the Kraus operators of a valid channel, provided p 6= r, which

we assume for now. Further, let

ΛU,σ(ρ) = U †Λσ(UρU
†)U (2.2.24)

where Λσ is the channel with Kraus operators Aσ and B. Now let

ΛU,s(ρ) = ΛU,+1(ρ) − ΛU,−1(ρ) + iΛU,+i(ρ) − iΛU,−i(ρ). (2.2.25)
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We see that

ΛU,s(ρ) = 4U †|p〉〈q|UρU †|s〉〈r|U. (2.2.26)

Now, from Definition 2.2.11 (TWIRL) and the triangle inequality (using || · ||2 ≤
|| · ||1), we have

||EU∼νΛU,s(ρ) − EU∼U(d)ΛU,s(ρ)||2 ≤ 4ǫ||ρ||1
d2

. (2.2.27)

This implies that each matrix element is small i.e.

|(EU∼ν − EU∼U(d))〈c|U †|p〉〈q|UρU †|s〉〈r|U |d〉| ≤ ǫ||ρ||1
d2

. (2.2.28)

Now let ρ = |e〉〈f |. We do not have to choose a physical state since the diamond-

norm bound is true for all matrices. This gives us

|(EU∼ν − EU∼U(d))U
∗
pcUqeU

∗
sfUrd| ≤

ǫ

d2
(2.2.29)

as required.

For p = r, we also assume that s = q since if not, just take p 6= r and s = q

and swap the labels. Here take A± = ±|p〉〈q| and B = I − |q〉〈q| and consider

ΛU,+(ρ) − ΛU,−(ρ) = 2U †|p〉〈q|UρU †|q〉〈p|U .

We remark that other types of approximate definitions are possible. For crypto-

graphic uses, a computationally secure approximate design may be sufficient, rather

than the information theoretic security discussed above. A computationally secure

approximate design would be nearly indistinguishable from an exact design in poly-

nomial time. Applications and constructions of such objects remain open problems.

Constructions

Here we summarise the known constructions of unitary and state designs. We will

say that a k-design construction is efficient if the effort required to sample a state or
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unitary from the design is polynomial in n and k. Note that we do not require the

number of states or unitaries to be polynomial because, even for approximate designs,

an exponential number is required. Rather, the number of random bits needed to

specify an element of the design should be poly(n, k).

We start with state design constructions since these have been studied far more

than unitary designs. Firstly, exact efficient state 1-designs are trivial: simply choose

a random state from any basis. Numerous examples of exact efficient state 2-design

constructions are known (e.g. [Bar02]). Hayashi et al. [HHH06] give an inefficient

construction of state k-designs for any n and k but general exact constructions are

not efficient in n and k. However, Ambainis and Emerson provide an efficient approx-

imate construction for any k with d ≥ 2k. Aaronson [Aar09] also gives an efficient

approximate construction.

Less is known about efficient constructions for unitary designs. It is straightfor-

ward to prove that the Pauli matrices form an exact 1-design and in [DLT02, Dan05]

it is shown that the Clifford group (see Chapter 6 for a definition) forms an exact

2-design although no efficient exact sampling method is known. However, an approxi-

mate sampling method is given in [DLT02] and a more efficient approximate 2-design

construction is given in [DCEL06]. The structure of unitary 2-designs is considered

in [GAE07], providing lower bounds on the number of unitaries in the design.

In Chapter 4 we give the first efficient approximate unitary k-design construction

for k > 2. The construction works in O(kn + log 1/ǫ) time for k = O(n/ log n).

Through Lemma 2.2.14, the construction is efficient for all the equivalent definitions

above. We also conjecture in Chapter 3 that random quantum circuits of length

poly(n, k) are approximate unitary k-designs although we only prove this for k = 2.
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Chapter 3

Random Quantum Circuits

3.1 Introduction: Pseudo-random Quantum Circuits

Random circuits are a natural object to consider when looking at the complexity of

random operations. They are circuits where the gates and their positions are cho-

sen randomly from some given distribution. If the gate set that the random circuit

chooses from is universal then, as we show below, the random circuit will converge

to the uniform Haar measure. The advantage of considering a random circuit rather

than a random unitary on the whole system is it is naturally efficient to implement,

for polynomial length circuits. Random circuits of some fixed length are also a new

measure on the unitary group which, as we show later, reproduces some of the prop-

erties of the Haar measure for polynomial length. As well as the computer science

aspects, this has applications in physics since randomly interacting systems could be

modelled as a random circuit. These systems will only reach their equilibrium if the

random circuit converges quickly. Thus proving convergence of the random circuit

shows that some physical systems will have some properties of Haar random systems

after evolving for a short amount of time.

We consider a general class of random circuits where a series of two-qubit gates are

chosen from a universal gate set. We give a framework for analysing the kth moments

of these circuits. Our conjecture, based on an analogous classical result [BH08], is
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that a random circuit on n qubits of length poly(n, k) is an approximate k-design.

While we do not prove this, we instead give a tight analysis of the k = 2 case. We find

that in a broad class of natural random circuit models (described in Section 3.1.1), a

circuit of length O(n(n+log 1/ǫ)) yields an ǫ-approximate 2-design. The approximate

design definition used in this section is the diamond-norm definition given in Definition

2.2.10 and, through Lemma 2.2.14, applies to the alternative definitions given above.

Moreover, our results also apply to random stabiliser circuits, meaning that a random

stabiliser circuit of length O(n(n + log 1/ǫ)) will be an ǫ-approximate 2-design. This

both simplifies the construction and tightens the efficiency of the approach of [DLT02],

which constructed ǫ-approximate 2-designs in time O(n6(n2 + log 1/ǫ)) using O(n3)

elementary quantum gates.

3.1.1 Random Circuits

The random circuit we will use is the following. Choose a 2-qubit gate set that is

universal on U(4) (or on the stabiliser subgroup of U(4)). One example of this is the

set of all one qubit gates together with the controlled-NOT gate. Another is simply

the set of all of U(4). Then, at each step, choose a random pair of qubits and apply

a gate from the universal set chosen uniformly at random. For the U(4) case, the

distribution will be the Haar measure on U(4). One such circuit is shown in Fig. 3.1

for n = 4 qubits. This is based on the approach used in [ODP07, DOP07] but our

analysis is both simpler and more general.

Figure 3.1: An example of a random circuit. Different lines indicate a different gate
is applied at each step.

Since the universal set can generate the whole of U(2n) in this way, such random
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circuits can produce any unitary. Further, since this process converges to a unitar-

ily invariant distribution and the Haar distribution is unique, the resulting unitary

must be uniformly distributed amongst all unitaries [ELL05]. Therefore this process

will eventually converge to a Haar distributed unitary from U(2n). This is proven

rigorously in Lemma 3.4.7. However, since a Haar unitary cannot be produced in

polynomial time, this process will not converge in polynomial time. We address this

problem by considering only the lower-order moments of the distribution and showing

these are nearly the same for random circuits as for Haar-distributed unitaries. This

claim is formally described in Theorem 3.3.1.

This chapter is organised as follows. In Section 3.2 we explain how a random

circuit could be used to construct a k-design. We then summarise the results of this

chapter in Section 3.3. In Section 3.4 we work out how the state evolves after a

single step of the random circuit. We then extend this to multiple steps in Section

3.5 and prove our general convergence results. A key simplification will be (following

[ODP07]) to map the evolution of the second moments of the quantum circuit onto a

classical Markov chain. We then prove a tight convergence result for the case where

the gates are chosen from U(4) in Section 3.6. This section contains most of the

technical content of the chapter. Using our bounds on mixing time we put together

the proof that random circuits yield approximate unitary 2-designs in Section 3.7.

Section 3.8 concludes with some discussion of applications.

The majority of this chapter, with the exception of Section 3.6.4, has been pub-

lished previously as [HL09b] and is joint work with Aram Harrow.
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3.2 Preliminaries

3.2.1 Pauli expansion

Much of the following will be done in the Pauli basis. In this chapter, we choose the

normalisation so that ρ is written in the Pauli basis as

ρ = 2−n/2
∑

p

γ(p)σp. (3.2.1)

With this normalisation,
∑

p

γ(p)2 = tr ρ2 (3.2.2)

which is 1 for pure ρ. In general,

∑

p

γ2(p) ≤ 1

with equality if and only if ρ is pure. Note also that tr ρ = 1 is equivalent to γ(0) =

2−n/2.

This notation is extended to states on nk qubits by treating γ as a function of k

strings from {0, 1, 2, 3}n . Thus a state ρ on nk qubits is written as

ρ = 2−nk/2
∑

p1,...,pk

γ0(p1, . . . , pk)σp1 ⊗ . . .⊗ σpk
. (3.2.3)

3.2.2 Random Circuits as k-designs

If a random circuit is to be an approximate k-design then Eqn. 2.2.12 must be satisfied

where the unitaries in Gν are the different possible random circuits. We can think of

this as applying the random circuit not once but k times to k different systems.

Suppose that applying t random gates yields the random circuit W . If W⊗k acts

on an nk-qubit state ρ, then the resulting state is

ρW := W⊗kρ(W †)⊗k = 2−nk/2
∑

p1,...,pk

γ0(p1, . . . , pk)Wσp1W
†⊗. . .⊗Wσpk

W †. (3.2.4)
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For this to be a k-design, the expectation over all choices of random circuit should

match the expectation over Haar-distributed W ∈ U(2n).

We are now ready to state our main results. Our results apply to a large class of

gate sets which we define below:

Definition 3.2.1. Let E = {pi, Ui} be a discrete ensemble of elements from U(d).

Define an operator GE by

GE :=
∑

i

piU
⊗k,k
i (3.2.5)

where U⊗k,k = U⊗k ⊗ (U∗)⊗k. More generally, we can consider continuous distri-

butions. If µ is a probability measure on U(d) then we can define Gµ by analogy

as

Gµ :=

∫

U(d)
dµ(U)U⊗k,k (3.2.6)

Then E (or µ) is k-copy gapped if GE (or Gµ) has only k! eigenvalues with absolute

value equal to 1.

For any discrete ensemble E = {pi, Ui}, we can define a measure µ =
∑

i piδUi .

Thus, it suffices to state our theorems in terms of µ and Gµ. We also remark that

the k-copy gapped property is the same as the k-tensor product expander property

for any non-zero gap as defined in Chapter 4.

The condition on Gµ in the above definition may seem somewhat strange. We will

see in Section 3.4 that when d ≥ k there is a k!-dimensional subspace of (Cd)⊗2k that

is acted upon trivially by any Gµ. Additionally, when µ is the Haar measure on U(d)

then Gµ is the projector onto this space. Thus, the k-copy gapped condition implies

that vectors orthogonal to this space are shrunk by Gµ.

We will see that Gµ is k-copy gapped in a number of important cases. First, we

give a definition of universality that can apply not only to discrete gates sets, but to

arbitrary measures on U(4).

Definition 3.2.2. Let µ be a distribution on U(4). Suppose that for any open ball

S ⊂ U(4) there exists a positive integer ℓ such that µ⋆ℓ(S) > 0. Then we say µ is
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universal [for U(4)].

Here µ⋆ℓ is the ℓ-fold convolution of µ with itself; i.e.

µ⋆ℓ =

∫

δU1···Uℓ
dµ(U1) · · · dµ(Uℓ).

When µ is a discrete distribution over a set {Ui}, Definition 3.2.2 is equivalent to the

usual definition of universality for a finite set of unitary gates.

Theorem 3.2.3. The following distributions on U(4) are k-copy gapped:

(i) Any universal gate set. Examples are U(4) itself, any entangling gate together

with all single qubit gates, or the gate set considered in [ODP07].

(ii) Any approximate (or exact) unitary k-design on 2 qubits, such as the uniform

distribution over the 2-qubit Clifford group, which is an exact 2-design.

Proof.

(i) This is proven in Lemma 3.4.7.

(ii) This follows straight from Definition 2.2.6.

3.3 Summary of Results

Theorem 3.3.1. Let µ be a 2-copy gapped distribution and W be a random circuit on

n qubits obtained by drawing t random unitaries according to µ and applying each of

them to a random pair of qubits. Then there exists C (depending only on µ) such that

for any ǫ > 0 and any t ≥ C(n(n+log 1/ǫ)), GW is an ǫ-approximate unitary 2-design

according to either Definition 2.2.10 (DIAMOND) or Definition 2.2.11 (TWIRL).

To prove Theorem 3.3.1, we show that the second moments of the random circuits

converge quickly to those of a uniform Haar distributed unitary. For W a circuit as

in Theorem 3.3.1, write γW (p1, p2) for the Pauli coefficients of ρW = W⊗2ρ
(

W †)⊗2
.

Then write γt(p1, p2) = EWγW (p1, p2) where W is a circuit of length t. Then we have
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Lemma 3.3.2. Let µ and W be as in Theorem 3.3.1. Let the initial state be ρ with

γ0(p, p) ≥ 0 and
∑

p γ0(p, p) = 1 (for example the state |ψ〉〈ψ| ⊗ |ψ〉〈ψ| for any pure

state |ψ〉). Then there exists a constant C (possibly depending on µ) such that for

any ǫ > 0

(i)
∑

p1,p2
p1p2 6=00

(

γt(p1, p2) − δp1p2
1

2n(2n + 1)

)2

≤ ǫ (3.3.1)

for t ≥ Cn log 1/ǫ.

(ii)
∑

p1,p2
p1p2 6=00

∣

∣

∣

∣

γt(p1, p2) − δp1p2
1

2n(2n + 1)

∣

∣

∣

∣

≤ ǫ (3.3.2)

for t ≥ Cn(n + log 1/ǫ) or, when µ is the uniform distribution on U(4) or its

stabiliser subgroup, t ≥ Cn log n
ǫ .

We can then extend this to all states by a simple corollary:

Corollary 3.3.3. Let µ, W and γW be as in Lemma 3.3.2. Then, for any initial

state ρ = 1
2n

∑

p1,p2
γ0(p1, p2)σp1 ⊗ σp2 , there exists a constant C (possibly depending

on µ) such that for any ǫ > 0

(i)
∑

p1,p2
p1p2 6=00

(

γt(p1, p2) − δp1p2

∑

p 6=0 γ0(p, p)

4n − 1

)2

≤ ǫ (3.3.3)

for t ≥ Cn(n+ log 1/ǫ).

(ii)
∑

p1,p2
p1p2 6=00

∣

∣

∣

∣

γt(p1, p2) − δp1p2

∑

p 6=0 γ0(p, p)

4n − 1

∣

∣

∣

∣

≤ ǫ (3.3.4)

for t ≥ Cn(n+ log 1/ǫ).

By the diamond-norm definition of an approximate design (Definition 2.2.10),

we only need convergence in the 2-norm (Eqn. 3.3.3), which is implied by 1-norm
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convergence (Eqn. 3.3.4) but weaker. However, Definition 2.2.11 (TWIRL), which

requires the map to be close to the twirling operation, requires 1-norm convergence

(i.e. Eqn. 3.3.4). Thus, Theorem 3.3.1 for Definition 2.2.10 (DIAMOND) follows

from Corollary 3.3.3(i) and Theorem 3.3.1 for Definition 2.2.11 (TWIRL) follows

from Corollary 3.3.3(ii). Theorem 3.3.1 is proved in Section 3.7 and Corollary 3.3.3

in Section 3.5.

We note that we do not need to separately prove the result for Definition 2.2.11

(TWIRL) since the result follows from the equivalence of the k-design definitions

(Lemma 2.2.14). However, we include the proof since, if our bounds were improved to

show convergence in O(n log n
ǫ ) time, if we simply applied Lemma 2.2.14, this would

only imply that O(n(n+ log 1/ǫ) time was needed for Definition 2.2.11 (TWIRL).

We also emphasise that, in the course of proving Lemma 3.3.2, we prove that the

eigenvalue gap (defined in Section 3.5.3) of the Markov chain that gives the evolution

of the γ(p, p) terms is O(1/n). It is easy to show that this bound is tight for some

gate sets.

Related work: Here we compare our work with other related results and efficient

constructions of approximate unitary 2-designs.

• The uniform distribution over the Clifford group on n qubits is an exact 2-design

[DLT02]. Moreover, [DLT02] described how to sample from the Clifford group

using O(n8) classical gates and O(n3) quantum gates. Our results show that

applying O(n(n + log 1/ǫ)) random two-qubit Clifford gates also achieve an ǫ-

approximate 2-design (although not necessarily a distribution that is within ǫ

of uniform on the Clifford group).

• Dankert et al. [DCEL06] gave a specific circuit construction of an approximate

2-design. To achieve small error in the sense of Definition 2.2.10 (DIAMOND),

their circuits require the same O(n(n + log 1/ǫ)) gates that our random cir-

cuits do. However, when we use Definition 2.2.11 (TWIRL), the circuits from

[DCEL06] only need O(n log 1/ǫ) gates while we only show that random circuits

of length O(n(n+ log 1/ǫ)) suffice.
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• The closest results to our own are in the papers by Oliveira et al. [ODP07,

DOP07], which considered a specific gate set (random single qubit gates and a

controlled-NOT) and proved that the second moments converge in timeO(n2(n+

log 1/ǫ)). Our strategy of analysing random quantum circuits in terms of clas-

sical Markov chains is also adapted from [ODP07, DOP07]. In Section 3.4, we

generalise this approach to analyse the kth moments for arbitrary k.

Our main results extend the results of [ODP07, DOP07] to a larger class of gate

sets and improve their convergence bounds. Some of these improvements have

been conjectured by [Zni07], where the author presented numerical evidence in

support of them.

• An algorithmic application of random circuits was given in [HH08], where they

were used to construct a new class of superpolynomial quantum speedups. In

that paper, random circuits of length O(n3) were used in order to guarantee

that they were so-called “dispersing” circuits. Our results immediately imply

that circuits of length O(n2) would instead suffice. We believe that this could

be further improved with a specialised argument, since [HH08] assumed that

the input to the random circuit was always a computational basis state.

3.4 Analysis of the Moments

In order to prove our results, we need to understand how the state evolves after each

step of the random circuit. In this section we consider just one step and a fixed

pair of qubits. Later on we will extend this to prove convergence results for multiple

steps with random pairs of qubits drawn at every step. We consider first the Haar

distribution over the full unitary group and then will discuss the more general case of

any 2-copy gapped distribution.

In this section, we work in general dimension d and with a general Hermitian

orthogonal basis σ0, . . . , σd2−1. Later we will take d to be either 4 or 2n and the

σi to be Pauli matrices. However, in this section we keep the discussion general to
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emphasise the potentially broader applications.

Fix an orthonormal basis for d× d Hermitian matrices: σ0, . . . , σd2−1, normalised

so that trσpσq = d δp,q. Let σ0 be the identity. We need to evaluate the quantity

EU

(

U⊗kσp1 ⊗ . . . ⊗ σpk
(U †)⊗k

)

=: T (p) (3.4.1)

where the expectation is over Haar distributed U ∈ U(d). We will need this quantity

in two cases. Firstly, for d = 2n, these are the moments obtained after applying a

uniformly distributed unitary so we know what the random circuit must converge to.

Secondly, for d = 4, this tells us how a random U(4) gate acts on any chosen pair.

Call the quantity in Eqn. 3.4.1 T (p) (we use bold to indicate a k-tuple of coeffi-

cients; take p = (p1, . . . , pk)) and write it in the σp basis as

T (p) =
∑

q

Ĝ(q;p)σq1 ⊗ . . .⊗ σqk . (3.4.2)

Here, Ĝ(q;p) is the coefficient in the Pauli expansion of T (p) and we define Ĝ as the

matrix with entries equal to Ĝ(q;p). We have left off the usual normalisation factor

because, as we shall see, with this normalisation Ĝ is a projector. Inverting this, we

have

Ĝ(q;p) = d−k tr (σq1 ⊗ . . .⊗ σqkT (p))

= d−kEU tr
(

(σq1 ⊗ · · · ⊗ σqk)U⊗k(σp1 ⊗ · · · ⊗ σpk
)(U †)⊗k

)

(3.4.3)

Note that Ĝ is real since T and the basis are Hermitian.

We can gain all the information we need about the Haar integral in Eqn. 3.4.1

with the following observations:

Lemma 3.4.1. T (p) commutes with U⊗k for any unitary U .

Proof. Follows from the invariance of the Haar measure on the unitary group.
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Corollary 3.4.2. T (p) is a linear combination of permutations from the symmetric

group Sk.

Proof. This follows from Schur-Weyl duality (see e.g. [GW98]).

From this, we can prove that Ĝ is a projector and find its eigenvectors.

Theorem 3.4.3. Ĝ is symmetric, i.e. Ĝ(q;p) = Ĝ(p;q).

Proof. Follows from the invariance of the trace under cyclic permutations.

Theorem 3.4.4. S(π) is an eigenvector of Ĝ with eigenvalue 1 for any subsystem

permutation operator S(π) i.e.

∑

q

Ĝ(p;q) tr(σq1 ⊗ . . . ⊗ σqkS(π)) = tr(σp1 ⊗ . . . ⊗ σpk
S(π)).

Further, any vector orthogonal to this set has eigenvalue 0.

Proof. For the first part,

∑

q

Ĝ(p;q) tr(σq1 ⊗ . . .⊗ σqkS(π))

= d−k
∑

q

EU tr
(

σq1Uσp1U
†
)

. . . tr
(

σqkUσpk
U †
)

tr (σq1 ⊗ . . . ⊗ σqkS(π))

= d−k tr

(

S(π)EU
∑

q1

tr
(

σq1Uσp1U
†
)

σq1 ⊗ . . .⊗
∑

qk

tr
(

σqkUσpk
U †
)

σqk

)

(3.4.4)

Writing U †σpU in the σp basis, we find

1

d

∑

q

tr
(

σqUσpU
†
)

σq = UσpU
†.

Therefore Eqn. 3.4.4 becomes

tr
(

S(π)EUU
†σp1U ⊗ . . .⊗ U †σpk

U
)

= tr (σp1 ⊗ . . . ⊗ σpk
S(π)) .
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For the second part, consider any vector v which is orthogonal to the permutation

operators (we can neglect the complex conjugate because S(π) is real in this basis),

i.e.
∑

q

tr (σq1 ⊗ . . .⊗ σqkS(π)) v(q) = 0 (3.4.5)

for any permutation π. Then

∑

q

Ĝ(p;q)v(q) = d−k
∑

q

tr (σq1 ⊗ . . .⊗ σqkT (p)) v(q)

which is zero since T (p) is a linear combination of permutations and v is orthogonal

to this by Eqn. 3.4.5.

Theorem 3.4.5. Ĝ2 = Ĝ, i.e.
∑

q′ Ĝ(p;q′)Ĝ(q′;q) = Ĝ(p;q).

Proof. Using Eqn. 3.4.3,

∑

q′

Ĝ(p;q′)Ĝ(q′;q) =
∑

q′

Ĝ(p;q′)d−k tr
(

σq′1 ⊗ . . .⊗ σq′kT (q)
)

.

From Corollary 3.4.2, T (q) is a linear combination of permutations. This implies,

using Theorem 3.4.4 that

∑

q′

Ĝ(p;q′)d−k tr
(

σq′1 ⊗ . . .⊗ σq′kT (q)
)

= d−k tr (σp1 ⊗ . . . ⊗ σpk
T (q))

= Ĝ(p;q)

as required.

Corollary 3.4.6. Ĝ is a projector so has eigenvalues 0 and 1.

We now evaluate Ĝ and T for the cases of k = 1 and k = 2 since these are the

cases we are interested in for the remainder of the chapter.
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3.4.1 k = 1

The k = 1 case is clear: the random unitary completely randomises the state. There-

fore all terms in the expansion are set to zero apart from the identity i.e.

T (p) =











σ0 p = 0

0 p 6= 0.

(3.4.6)

3.4.2 k = 2

For k = 2, there are just two permutation operators, identity I and swap F . Therefore

there are just two eigenvectors with non-zero eigenvalue (n > 1). In normalised form,

taking them to be orthogonal, their components are

f1(q1, q2) = δq10δq20

f2(q1, q2) =
1

d2 − 1
δq1q2(1 − δq10)

We will now prove three properties of Ĝ that we need:

1. Ĝ(p1, p2; q1, q2) = 0 if p1 6= p2 or q1 6= q2.

Proof. Consider the function f(q1, q2) = δq1aδq2b with a 6= b. This function has

zero overlap with the eigenvectors f1 and f2 so it goes to zero when acted on by

Ĝ. Therefore Ĝ(p1, p2; a, b) = 0. The claim follows from the symmetry property

(Theorem 3.4.3).

With this we will write Ĝ(p; q) ≡ Ĝ(p1, p2; q1, q2).

2. Ĝ(p; 0) = δp0.

Proof. Let Ĝ act on eigenvector f1.

3. Ĝ(p; a) = 1
d2−1

for a, p 6= 0.
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Proof. Let Ĝ act on the input δqa. This has zero overlap with f1 and overlap

1
d2−1

with f2.

Therefore we have

Ĝ(p1, p2; q1, q2) =



























0 p1 6= p2 or q1 6= q2

1 p1 = p2 = q1 = q2 = 0

1
d2−1

p1 = p2 6= 0, q1 = q2 6= 0

(3.4.7)

Since T (p1, p2) =
∑

q1,q2
Ĝ(p1, p2; q1, q2)σq1 ⊗ σq2, we have

T (p1, p2) =



























0 p1 6= p2

σ0 ⊗ σ0 p1 = p2 = 0

1
d2−1

∑

p′ 6=0 σp′ ⊗ σp′ p1 = p2 6= 0.

(3.4.8)

Therefore the terms σp1 ⊗ σp2 with p1 6= p2 are set to zero. Further, the sum of

the diagonal coefficients γ(p, p) is conserved. This allows us to identify this with a

probability distribution (after renormalising) and use Markov chain analysis. To see

this, write again the starting state

ρ =
1

d

∑

q1,q2

γ0(q1, q2)σq1 ⊗ σq2

with state after application of any unitary W

ρW =
1

d

∑

q1,q2

γW (q1, q2)σq1 ⊗ σq2 = 2−n
∑

q1,q2

γ(q1, q2)
(

Wσq1W
†
)

⊗
(

Wσq2W
†
)

.
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Then

∑

q

γW (q, q) =
1

d

∑

q

tr (σq ⊗ σqρW )

= tr (FρW )

=
1

d

∑

q1,q2

γ(q1, q2) tr
(

F
(

Wσq1W
†
)

⊗
(

Wσq2W
†
))

=
1

d

∑

q1,q2

γ(q1, q2) tr (σq1σq2)

=
∑

q

γ(q, q)

as required, where F is the swap operator and we have used Lemmas 1.2.2 and 1.2.1.

3.4.3 Moments for General Universal Random Circuits

We now consider universal distributions µ that in general may be different from the

uniform (Haar) measure on U(d). Our main result in this section will be to show

that a universal distribution on U(4) is also 2-copy gapped. In fact, we will phrase

this result in slightly more general terms and show that a universal distribution on

U(d) is also k-copy gapped for any k. Universality (Definition 3.2.2) generalises in the

obvious way to U(d), whereas when we say that µ is k-copy gapped, we mean that

‖Gµ −GU(d)‖∞ < 1, (3.4.9)

where G? = EUU
⊗k,k, with the expectation taken over µ for Gµ or over the Haar

measure for GU(d).

The reason Eqn. 3.4.9 represents our condition for µ to be k-copy gapped is as

follows: Observe that Ĝ and G are unitarily related, so the definition of k-copy gapped

could equivalently be given in terms of Ĝ. We have shown above that ĜU(d) (and thus

GU(d)) has all eigenvalues equal to 0 or 1 i.e. it is a projector. By contrast, Gµ may

not even be Hermitian. However, we will prove below that all eigenvectors of GU(d)

with eigenvalue 1 are also eigenvectors of Gµ with eigenvalue 1. Thus, Eqn. 3.4.9 will
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imply that limt→∞(Ĝµ)
t = ĜU(d), just as we would expect for a gapped random walk.

We would like to show that Eqn. 3.4.9 holds whenever µ is universal. This result

was proved in [AK62] (and was probably known even earlier) when µ had the form

(δU1 + δU2)/2. Here we show how to extend the argument to any universal µ.

Lemma 3.4.7. Let µ be a distribution on U(d). Then all eigenvectors of GU(d) with

eigenvalue 1 are eigenvectors of Gµ with eigenvalue 1. Additionally, if µ is universal

then µ is k-copy gapped for any positive integer k (cf. Eqn. 3.4.9).

In particular, if k = 2 this Lemma implies that µ is 2-copy gapped (cf. Theorem

3.2.3).

Proof. Let V ∼= C
d be the fundamental representation of U(d), where the action of

U ∈ U(d) is simply U itself. Let V ∗ be its dual representation, where U acts as

U∗. The operators Gµ and GU(d) act on the space V ⊗k ⊗ (V ∗)⊗k. We will see that

GU(d) is completely determined by the decomposition of V ⊗k⊗(V ∗)⊗k into irreducible

representations (irreps). Suppose that the multiplicity of (rλ, Vλ) in V ⊗k ⊗ (V ∗)⊗k is

mλ, where the Vλ’s are the irrep spaces and rλ(U) the corresponding representation

matrices. In other words

V ⊗k ⊗ (V ∗)⊗k ∼=
⊕

λ

Vλ ⊗ C
mλ (3.4.10)

U⊗k ⊗ (U∗)⊗k ∼
∑

λ

|λ〉〈λ| ⊗ rλ(U) ⊗ Imλ
(3.4.11)

Here ∼ indicates that the two sides are related by conjugation by a fixed (U indepen-

dent) unitary.

Let λ = 0 denote the trivial irrep: i.e. V0 = C and r0(U) = 1 for all U . We

claim that EUrλ(U) = 0 whenever λ 6= 0 and the expectation is taken over the Haar

measure. To show this, note that EUrλ(U) commutes with rλ(V ) for all V ∈ U(d) and

thus, by Schur’s Lemma, we must have EUrλ(U) = cI for some c ∈ C. However, by

the translation-invariance of the Haar measure we have cI = EUrλ(U) = EUrλ(UV ) =
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c rλ(V ) for all V ∈ U(d). Since λ 6= 0, we cannot have rλ(V ) = I for all V and so it

must be that c = 0.

Thus, if we write GU(d) and Gµ using the basis on the RHS of Eqn. 3.4.11, we

have

GU(d) = |0〉〈0| ⊗ Im0 (3.4.12)

where |0〉〈0| is a projector onto the trivial irrep. On the other hand,

Gµ = |0〉〈0| ⊗ Im0 +
∑

λ6=0

|λ〉〈λ| ⊗
(∫

rλ(U)dµ(U)

)

⊗ Imλ
(3.4.13)

Thus, every eigenvector of GU(d) with eigenvalue one is also fixed by Gµ. For the

remainder of the space, the direct sum structure means that

‖GU(d) −Gµ‖∞ = max
λ6=0
mλ 6=0

∥

∥

∥

∥

∫

rλ(U)dµ(U)

∥

∥

∥

∥

∞
. (3.4.14)

Note that this maximisation only includes λ with dimVλ > 1. This is because non-

trivial one-dimensional irreps of U(d) have the form detUm for some non-zero integer

m. Under the map U 7→ eiφU , such irreps pick up a phase of eimφ. However, U⊗k ⊗
(U∗)⊗k is invariant under U 7→ eiφU . Thus V ⊗k ⊗ (V ∗)⊗k cannot contain any non-

trivial one-dimensional irreps.

Now suppose by contradiction that there exists λ 6= 0 with mλ 6= 0 and

∣

∣

∣

∣

∣

∣

∣

∣

∫

rλ(U)dµ(U)

∣

∣

∣

∣

∣

∣

∣

∣

∞
= 1.

(We do not need to consider the case ‖
∫

rλ(U)dµ(U)‖∞ > 1, since ‖rλ(U)‖∞ = 1 for

all U and ‖ · ‖∞ obeys the triangle inequality.) Indeed, the triangle inequality further

implies that there exists a unit vector |v〉 ∈ Vλ such that

∫

dµ(U) rλ(U)|v〉 = ω|v〉,

for some ω ∈ C with |ω| = 1.
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By the above argument we can assume that dimVλ > 1. Since Vλ is irreducible,

it cannot contain a one-dimensional invariant subspace, implying that there exists

U0 ∈ U(d) such that

|〈v|rλ(U0)|v〉| = 1 − δ,

for some δ > 0. Since U 7→ |〈v|rλ(U)|v〉| is continuous, there exists an open ball S

around U0 such that |〈v|rλ(U)|v〉| ≤ 1 − δ/2 for all U ∈ S. Define S̄ := U(d)\S.

Now we use the fact that µ is universal to find an ℓ such that µ⋆ℓ(S) > 0. Next,

observe that
∫

dµ⋆ℓ(U) 〈v|rλ(U)|v〉 = ωℓ. Taking the absolute value of both sides

yields

1 =

∣

∣

∣

∣

∣

∫

U(d)
dµ⋆ℓ(U) 〈v|rλ(U)|v〉

∣

∣

∣

∣

∣

≤
∫

U(d)
dµ⋆ℓ(U) |〈v|rλ(U)|v〉|

=

∫

S
dµ⋆ℓ(U) |〈v|rλ(U)|v〉| +

∫

S̄
dµ⋆ℓ(U) |〈v|rλ(U)|v〉|

≤ µ⋆ℓ(S)

(

1 − δ

2

)

+
(

1 − µ⋆ℓ(S)
)

< 1,

a contradiction. We conclude that ‖GU(d) −Gµ‖∞ < 1.

3.5 Convergence

In the previous section we saw that iterating any universal gate set on U(d) eventually

converges to the uniform distribution on U(d). Since the set of all two-qubit unitaries

is universal on U(2n), this implies that random circuits eventually converge to the

Haar measure. In this section, we turn to proving upper bounds on this convergence

rate, focusing on the first two moments.

Let Ĝ(ij) be the matrix with Ĝ (with d = 4) acting on qubits i and j and the

identity on the others. Then, if the pair (i, j) is chosen at step t, we can find the
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expected coefficients at step t+ 1 by multiplying by Ĝ(ij). In general, a random pair

is chosen at each step. So

γt+1(p) =
∑

q

1

n(n− 1)

∑

i6=j
Ĝ(ij)(p;q)γt(q) (3.5.1)

where γt+1 are the expected coefficients at step t. We can think of this evolution as

repeated application of the matrix

P =
1

n(n− 1)

∑

i6=j
Ĝ(ij). (3.5.2)

For k = 2, the key idea of Oliveira et al. [ODP07] was to map the evolution of

the γ(p, p) coefficients to a Markov chain. The γ(p1, p2) coefficients with p1 6= p2 just

decay as each qubit is chosen and can be analysed directly.

However, we can only map the γ(p, p) coefficients to a probability distribution

when they are non-negative, which is not the case for general states. Most of the rest

of the chapter is dedicated to proving Lemma 3.3.2, which only applies to states with

γ(p, p) ≥ 0 and normalised so their sum is 1. Corollary 3.3.3 then extends this to all

states:

Proof of Corollary 3.3.3. Lemma 3.3.2 still applies to the γ(p1, p2) terms with p1 6= p2.

Therefore we just need to show how to apply Lemma 3.3.2 to states that initially have

some negative γ(p, p) terms.

For the γ(p, p) terms, Lemma 3.3.2 says that the random walk starting with any

initial probability distribution converges to uniform in some bounded time t. Let

gt(p, p; q, q) be the coefficients after t steps of the walk starting at a particular point

q (i.e. g0(p, p; q, q) = δp,q). Now, for any starting state ρ, let the initial coefficients

be γ0(p, p). Then, by linearity, we can write the expected coefficients after t steps

γt(p, p) := EγW (p, p) as

γt(p, p) =
∑

q 6=0

γ0(q, q)gt(p, p; q, q) (3.5.3)
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for p 6= 0.

We can now prove convergence rates for the expected coefficients γt(p, p):

(i) For the 2-norm, we have from Lemma 3.3.2 that for t ≥ Cn log 1/ǫ

∑

p 6=0

(

gt(p, p; q, q) −
1

4n − 1

)2

≤ ǫ (3.5.4)

for any q. Note that the normalisation for the γ(p, p) terms with p 6= 0 has

changed from Lemma 3.3.2 since we are neglecting the γ(0, 0) term here. Now

∑

p 6=0

(

γt(p, p) −
∑

q 6=0 γ0(q, q)

4n − 1

)2

=
∑

p 6=0





∑

q 6=0

γ0(q, q)

(

gt(p, p; q, q) −
1

4n − 1

)





2

≤
∑

q 6=0

γ0(q, q)
2
∑

q′ 6=0

∑

p 6=0

(

gt(p, p; q
′, q′) − 1

4n − 1

)2

≤ (4n − 1)ǫ
∑

q 6=0

γ0(q, q)
2

≤ 4nǫ
∑

q1,q2

γ0(q1, q2)
2

= 4nǫ tr ρ2

≤ 4nǫ

where the first inequality is the Cauchy-Schwarz inequality. Therefore for t ≥
Cn(n+ log 4n/ǫ), the 2-norm distance from stationarity for the γ(p, p) terms is

at most ǫ. Choose C ′ such that C ′n(n + log 1/ǫ) ≥ Cn(n + log 4n/ǫ) to obtain

the result.

(ii) For the 1-norm, Lemma 3.3.2 says that for t ≥ Cn(n+ log 1/ǫ)

∑

p 6=0

∣

∣

∣

∣

gt(q; p, p) −
1

4n − 1

∣

∣

∣

∣

≤ ǫ. (3.5.5)
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We can then proceed much as for the 2-norm case:

∑

p 6=0

∣

∣

∣

∣

γt(p, p) −
∑

q 6=0 γ0(q, q)

4n − 1

∣

∣

∣

∣

=
∑

p 6=0

∣

∣

∣

∣

∣

∣

∑

q 6=0

γ0(q, q)

(

gt(p, p; q, q) −
1

4n − 1

)

∣

∣

∣

∣

∣

∣

≤
∑

q 6=0

|γ0(q, q)|
∑

p 6=0

∣

∣

∣

∣

gt(p, p; q, q) −
1

4n − 1

∣

∣

∣

∣

≤ ǫ
∑

q 6=0

|γ0(q, q)|

≤ 2nǫ
∑

q 6=0

γ2
0(q, q)

≤ 2nǫ.

Therefore for t ≥ Cn(n + log 2n/ǫ), the 1-norm distance from stationarity for

the γ(p, p) terms is at most ǫ.

We now proceed to prove Lemma 3.3.2. Firstly, we will consider the simple case

of k = 1 to prove this process forms a 1-design as this will help us to understand the

more complicated case of k = 2.

3.5.1 First Moments Convergence

Recall that ρ = 2−n/2
∑

p γ(p)σp and we wish to evaluate the moments of the coeffi-

cients. So for the first moments to converge, we want to know Eγ(p).

For k = 1, the U(4) random circuit uniformly randomises each pair that is chosen.

More precisely, a pair of sites i, j are chosen at random and all the coefficients with

pi 6= 0 or pj 6= 0 are set to zero. Thus we get an exact 1-design when all sites have

been hit. For other gate sets, the terms do not decay to zero but decay by a factor

depending on the gap of Ĝ. Call the gap ∆; for U(4) ∆ = 1 and for others 0 < ∆ ≤ 1

and ∆ is independent of n. Therefore once each site has been hit m times the terms

have decayed by a factor (1 − ∆)m.
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For a bound like the mixing time (see Section 3.5.3 for definition), we want

to bound the quantity
∑

p 6=0 |EWγW (p)| where γW (p) is the Pauli coefficient af-

ter applying the random circuit W . We also want 2-norm bounds, so we bound
∑

p 6=0(EWγW (p))2 too. We will in fact find bounds on

∑

p 6=0

EW |γW (p)|

and
∑

p 6=0

(EW |γW (p)|)2 ,

which are stronger.

A standard problem in the theory of randomised algorithms is the coupon collector

problem. If a magazine comes with a free coupon, which is chosen uniformly randomly

from n different types, how many magazines should you buy to have a high probability

of getting all n coupons? It is not hard to show that n ln n
ǫ samples (magazines) have

at least a 1 − ǫ probability of including all n coupons. Using this, we expect all sites

to be hit with probability at least 1− ǫ after Θ(n log n
ǫ ) steps. This argument can be

made precise in this context by bounding the non-identity coefficients. We find, as

expected, that the sum is small after O(n log n) steps:

Lemma 3.5.1. After O(n log 1/ǫ) steps

∑

p 6=0

(EW |γW (p)|)2 ≤ ǫ

and after O(n log n
ǫ ) steps,

∑

p 6=0

EW |γW (p)| ≤ ǫ. (3.5.6)

Proof. At each step, a pair of sites is chosen at random and any terms with non-

identity coefficients for this pair decay by a factor (1 − ∆). For example, the term

σ1 ⊗ σ
⊗(n−1)
0 decays whenever the first site is chosen. Thus the probability of each

term decaying depends on the number of zeroes. We start with the 1-norm bound.
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Suppose the circuit applied after t steps is Wt. Consider EWt|γWt(p)| for any p

with d non-zeroes. Since the state ρ is physical, tr ρ2 ≤ 1 so
∑

p γ
2
0(p) ≤ 1. Now,

in each step, if any site is chosen where p is non-zero, this term decays by a factor

(1 − ∆). This occurs with probability 1 − (d−n)(d−n−1)
n(n−1) ≥ d/n, the probability of

choosing a pair where at least one site is non-zero. Therefore

E|γWt(p)| ≤ ((1 − ∆)d/n + (1 − d/n)) |γWt−1(p)|

where the expectation is over the circuit applied at step t. If we iterate this t times

we find

EW |γW (p)| ≤ exp(−∆td/n)|γ0(p)|

where the expectation here is over all random circuits for the t steps. We now sum

over all p:
∑

p 6=0

EW |γW (p)| ≤
n
∑

d=1

exp(−∆td/n)
∑

d(p)=d

|γ0(p)|

where d(p) is the number of non-zeroes in p. For the 1-norm bound, we can simply

bound |γ0(p)| ≤ 1 to give
∑

d(p)=d |γ0(p)| ≤
(n
d

)

3d so

∑

p 6=0

EW |γW (p)| ≤ (1 + 3 exp(−∆t/n))n − 1

where we have used the binomial theorem. Now let t = n
∆ ln 3n

ǫ . This gives

∑

p 6=0

EW |γW (p)| ≤ (1 + ǫ/n)n − 1 = O(ǫ).
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For the 2-norm bound,

∑

p 6=0

(EW |γW (p)|)2 ≤
∑

p 6=0

exp(−2∆td/n)γ2
0(p)

=

n
∑

d=1

exp(−2∆td/n)
∑

d(p)=d

γ2
0(p)

≤
n
∑

d=1

exp(−2∆td/n)

≤ exp(−2∆t/n)

1 − exp(−2∆t/n)

where we have used
∑

p γ
2
0(p) ≤ 1. We find after n

2∆ ln 1/ǫ steps that

∑

p 6=0

(EW |γW (p)|)2 ≤ ǫ

1 − ǫ

3.5.2 Second Moments Convergence

Firstly, the σp1 ⊗ σp2 terms for p1 6= p2 decay in a similar way to the non-identity

terms in the 1-design analysis. In fact, the proof of Lemma 3.5.1 carries over almost

identically to this case to give

Lemma 3.5.2. After O(n log 1/ǫ) steps

∑

p1 6=p2
(EW |γW (p1, p2)|)2 ≤ ǫ

and after O(n(n+ log 1/ǫ)) steps

∑

p1 6=p2
EW |γW (p1, p2)| ≤ ǫ.

Proof. Instead of the number of zeroes governing the decay rate, we need to count

the number of places where p1 and p2 differ. This gives

E|γWt(p1, p2)| ≤ ((1 − ∆)d/n + (1 − d/n)) |γWt−1(p1, p2)|
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where now d is the number of differing sites. There are
(

n
d

)

12d4n−d states that differ

in d places so we find

∑

p1 6=p2
EW |γW (p1, p2)| ≤ 4n[(1 + 3 exp(−∆t/n))n − 1].

Set t = n
∆(n ln 4 + ln 1/ǫ) to make this O(ǫ). The 2-norm bound follows in the same

way as for Lemma 3.5.1.

We now need to prove the γ(p, p) terms converge quickly. We have seen above

that the sum of the terms γ(p, p) is conserved and, for the purposes of proving Lemma

3.3.2, we assume the sum is 1 and γ(p, p) ≥ 0 for all p.

To illustrate the evolution, consider the simplest case when the gates are chosen

from U(4). We have evaluated Ĝ in Section 3.4.2 for k = 2 for this case. Translated

into coefficients this yields the following update rule, where we have written it for the

case when qubits 1 and 2 are chosen:

γt+1(r1, r2, r3, . . . , rn, s1, s2, s3, . . . , sn)

=































0 (r1, r2) 6= (s1, s2)

γt(0, 0, r3, . . . , rn, 0, 0, s3, . . . , sn) (r1, r2) = (s1, s2) = (0, 0)

1
15

∑

r′1,r′2
r′
1

r′
2
6=0

γt(r
′
1, r

′
2, r3, . . . , rn, r

′
1, r

′
2, s3, . . . , sn) (r1, r2) = (s1, s2) 6= (0, 0).

(3.5.7)

The key idea of Oliveira et al. [ODP07] was to map the evolution of the γ(p, p) coef-

ficients to a Markov chain. We can apply this here to get, on state space {0, 1, 2, 3}n ,

the evolution:

1. Choose a pair of sites uniformly at random.

2. If the state is 00 it remains 00.

3. Otherwise, choose the state uniformly at random from {0, 1, 2, 3}2\{00}.
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This is the correct evolution since, if the initial state is distributed according to

γt(q, q), the final state is distributed according to γt+1(p, p).

The evolution for other gate sets will be similar, but the states will not be chosen

uniformly randomly in the third step. However, the state 00 will remain 00 and the

stationary distribution on the other 15 states is the same. We will find the convergence

times for general gate sets and then consider the U(4) gate set since we can perform

a tight analysis for this case.

3.5.3 Markov Chain Analysis

Before finding the convergence rate for our problem, we will briefly introduce the

basics of Markov chain mixing time analysis. All of these standard results can be

found in [MT06] and references therein.

A process is Markov if the evolution only depends on the current state rather

than the full state history. Therefore the evolution of the state can be thought of as a

matrix, the transition matrix, acting on a vector which represents the current distri-

bution. We will only be interested in discrete time processes so the state after t steps

is given by the tth power of the transition matrix acting on the initial distribution.

We say a Markov chain is irreducible if it is possible to get from one state to any

other state in some number of steps. Further, a chain is aperiodic if it does not return

to a state at regular intervals. If a chain is both irreducible and aperiodic then it is

said to be ergodic. A well known result of Markov chain theory is that all ergodic

chains converge to a unique stationary distribution. In matrix language this says that

the transition matrix P has eigenvalue 1 with no multiplicity and all other eigenvalues

have absolute value strictly less than 1. We will also need the notion of reversibility.

A Markov chain is reversible if the time reversed chain has the same transition matrix,

with respect to some distribution. This condition is also known as detailed balance:

π(x)P (x, y) = π(y)P (y, x). (3.5.8)
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It can be shown that a reversible ergodic Markov chain is only reversible with respect

to the stationary distribution. So above π(x) is the stationary distribution of P . An

immediate consequence of this is that for a chain with uniform stationary distribution,

it is reversible if and only if it is symmetric (i.e. P (x, y) = P (y, x)). Note also that

reversible chains have real eigenvalues, since they are similar to the symmetric matrix
√

π(x)
π(y)P (x, y) (using the similarity transform δxy

√

π(x)).

With these definitions and concepts, we can now ask how quickly the Markov

chain converges to the stationary distribution. This is normally defined in terms of

the 1-norm mixing time. We use (half the) 1-norm distance to measure distances

between distributions:

||s− t|| =
1

2
||s− t||1 =

1

2

∑

i

|si − ti|. (3.5.9)

We assume all distributions are normalised so then 0 ≤ ||s− t|| ≤ 1. We can now

define the mixing time:

Definition 3.5.3. Let π be the stationary distribution of P . Then if P is ergodic the

mixing time τ is

τ(ǫ) = max
s

min
t
{t ≥ 0 :

∣

∣

∣

∣P ts− π
∣

∣

∣

∣ ≤ ǫ}. (3.5.10)

We will also use the (weaker) 2-norm mixing time (note this is not the same as τ2

in [MT06]):

Definition 3.5.4. Let π be the stationary distribution of P . Then if P is ergodic the

2-norm mixing time τ2 is

τ2(ǫ) = max
s

min
t
{t ≥ 0 :

∣

∣

∣

∣P ts− π
∣

∣

∣

∣

2
≤ ǫ}. (3.5.11)

Unless otherwise stated, when we say mixing time we are referring to the 1-norm

mixing time.

There are many techniques for bounding the mixing time, including finding the

second largest eigenvalue of P . This gives a good measure of the mixing time because
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components parallel to the second largest eigenvector decay the slowest. We have (for

reversible ergodic chains)

Theorem 3.5.5 (see [MT06], Corollary 1.15).

τ(ǫ) ≤ 1

∆
ln

1

π∗ǫ

where π∗ = minπ(x) and ∆ = min(1 − λ2, 1 + λmin) where λ2 is the second largest

eigenvalue and λmin is the smallest. ∆ is known as the gap.

If the chain is irreversible, it may not even have real eigenvalues. However, we

can bound the mixing time in terms of the eigenvalues of the reversible matrix PP ∗

where P ∗(x, y) = π(y)
π(x)P (y, x). In this case we have ([MT06], Corollary 1.14)

τ(ǫ) ≤ 2

∆PP ∗
ln

1

π∗ǫ
(3.5.12)

where now ∆PP ∗ is the gap of the chain PP ∗. Note that for a reversible chain P = P ∗

and ∆PP ∗ ≈ 2∆ so the bounds are approximately the same.

This can also be converted into a 2-norm mixing time bound:

τ2(ǫ) ≤
2

∆PP ∗
ln 1/ǫ. (3.5.13)

To bound the gap, we will use the comparison theorem in Theorem 3.5.6 below. In

this Theorem, we are thinking of the Markov chain as a directed graph where the

vertices are the states and there are edges for allowed transitions (i.e. transitions with

non-zero probability). For irreducible chains, it is possible to make a path from any

vertex to any other; we call the path length the number of transitions in such a path

(which will in general depend on the choice of path).

Theorem 3.5.6 (see [MT06], Theorem 2.14). Let P and P̂ be two Markov chains

on the same state space Ω with the same stationary distribution π. Then, for every

x 6= y ∈ Ω with P̂ (x, y) > 0 define a directed path γxy from x to y along edges in P
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and let its length be |γxy|. Let Γ be the set of all such paths. Then

∆ ≥ ∆̂/A

for the gaps ∆ and ∆̂ where

A = A(Γ) = max
a6=b,P (a,b)6=0

1

π(a)P (a, b)

∑

x 6=y:(a,b)∈γxy

π(x)P̂ (x, y)|γxy |.

For example, when comparing 1-dimensional random walks there is no choice in

the paths; they must pass through every point between x and y. Further, the walk can

only progress one step at a time so (without loss of generality, for reversible chains)

let b = a+ 1 to give

A = max
a

1

π(a)P (a, a + 1)

∑

x≤a

∑

y≥a+1

π(x)P̂ (x, y)(y − x)

= max
a

P̂ (a, a+ 1)

P (a, a+ 1)
. (3.5.14)

A generalisation of the comparison theorem involves constructing flows, which are

weighted sets of paths between states. This can give a tighter bound since bottlenecks

are averaged over. This gives a modified comparison theorem:

Theorem 3.5.7 ([DS93], Theorem 2.3). Let P and P̂ be two Markov chains on the

same state space Ω with the same stationary distribution π. Then, for every x 6= y ∈ Ω

with P̂ (x, y) > 0, construct a set of directed paths Pxy from x to y along edges in P .

We define the flow function f which maps each path γxy ∈ Pxy to a real number in

the interval [0, 1] such that

∑

γxy∈Pxy

f(γxy) = P̂ (x, y).
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Again, let the length of each path be |γxy|. Then

∆ ≥ ∆̂/A

for the gaps ∆ and ∆̂ where

A = A(f) = max
a6=b,P (a,b)6=0

1

π(a)P (a, b)

∑

x 6=y,γxy∈Pxy:(a,b)∈γxy

π(x)f(γxy)|γxy|. (3.5.15)

Note that we recover the comparison theorem when there is just one path between

each x and y.

Yet another generalisation is to allow general length functions instead of simply

counting the edges. This only appears in the literature as a comparison to the chain

P̂ (x, y) = π(y) although it can easily be generalised to allow comparison with any

chain.

Theorem 3.5.8 ([Kah96], Proposition 1). Let P be a Markov chain on the state space

Ω with stationary distribution π. Then, for every x 6= y ∈ Ω define a directed path

γxy from x to y along edges in P and let its length be

|γxy|l =
∑

(a,b)∈γxy

l(a, b) (3.5.16)

for any positive length function l(a, b), defined on the edges of the path. Let Γ be the

set of all such paths. Then

∆ ≥ 1/A

where

A = A(Γ) = max
a6=b,P (a,b)6=0

1

l(a, b)π(a)P (a, b)

∑

x 6=y:(a,b)∈γxy

π(x)P̂ (x, y)|γxy |l.
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Decomposition

For some Markov chains, it is easier to consider different parts of the chain separately

to prove convergence results. This allows, for example, different convergence tech-

niques to be used on different parts of the chain. The separate parts are combined

using the decomposition theorem:

Theorem 3.5.9 ([MR00], Theorem 4.2). Let P (x, y) be the transition matrix for a

reversible Markov chain with state space Ω and stationary distribution π(x). Then let

Ωi be disjoint subsets of Ω such that ∪iΩi = Ω. Let

Pi(x, y) =



























P (x, y) x, y ∈ Ωi, x 6= y

1 −∑y′∈Ωi,y′ 6=x P (x, y′) x = y ∈ Ωi

0 otherwise.

(3.5.17)

Further let wi =
∑

x∈Ωi
π(x) and

P̄ (i, j) =
1

wi

∑

x∈Ωi,y∈Ωj

π(x)P (x, y). (3.5.18)

Then

∆ ≥ 1

2
∆̄ min

i
∆i (3.5.19)

where ∆ is the gap of P , ∆̄ for P̄ and ∆i for Pi.

log-Sobolev Constant

We will need tighter, but more complicated, mixing time results to prove the tight

result for the U(4) case. We use the log-Sobolev constant:

Definition 3.5.10. The log-Sobolev constant ρ of a chain with transition matrix P

and stationary distribution π is

ρ = min
f

∑

x 6=y(f(x) − f(y))2P (x, y)π(y)
∑

x π(x)f(x)2 log f(x)2
P

y π(y)f(y)2

.
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The mixing time result is:

Lemma 3.5.11 (see [DS96], Theorem 3.7’). The mixing time of a finite, reversible,

irreducible Markov chain is

τ(ǫ) = O

(

1

ρ
log log

1

π∗
+

1

∆
log

d

ǫ

)

(3.5.20)

where ρ is the Sobolev constant, π∗ is the smallest value of the stationary distribution,

∆ is the gap and d is the size of the state space.

Further, the comparison theorem (Theorem 3.5.6) works just the same to give

ρ ≥ ρ̂/A.

We will need one more result, due to Diaconis and Saloff-Coste:

Lemma 3.5.12 ([DS96], Lemma 3.2). Let Pi, i = 1, . . . , d, be Markov chains with

gaps ∆i and Sobolev constants ρi. Now construct the product chain P . This chain

has state space equal to the product of the spaces for the chains Pi and at each step

one of the chains is chosen at random and run for one step. Then P has spectral gap

given by:

∆ =
1

d
min
i

∆i

and Sobolev constant:

ρ =
1

d
min
i
ρi.

3.5.4 Convergence Proof

We now prove the Markov chain convergence results to show that the γ(p, p) terms

converge quickly. We have already shown that the γ(p1, p2) terms with p1 6= p2

converge quickly and that there is no mixing between these terms and the γ(p, p)

terms. Therefore, in this section, we remove such terms from Ĝ.

63



We want to prove the Markov chain with transition matrix (Eqn. 3.5.2)

P =
1

n(n− 1)

∑

i6=j
Ĝ(ij)

converges quickly. Firstly, we know from Section 3.4.3 that P has two eigenvectors

with eigenvalue 1. The first is the identity state (σ0 ⊗ σ0) and the second is the

uniform sum of all non-identity terms ( 1
4n−1

∑

p 6=0 σp⊗ σp). From now on, we remove

the identity state. This makes the chain irreducible. Since we know it converges, it

must be aperiodic also so the chain is ergodic and all other eigenvalues are strictly

between 1 and −1.

We show here that the gap of this chain, up to constants, does not depend on the

choice of 2-copy gapped gate set. In the second half of the chapter we find a tight

bound on the gap for the U(4) case which consequently gives a tight bound on the

gap for all universal sets.

Since the stationary distribution is uniform, the chain is reversible if and only if

P is a symmetric matrix. A sufficient condition for P to be symmetric is for Ĝ(ij)

to be symmetric. We saw in Theorem 3.4.3 that for the U(4) gate set case Ĝ(ij) is

symmetric. In fact, the proof works identically to show that Ĝ(ij) is symmetric for

any gate set, provided the set is invariant under Hermitian conjugation. However,

2-copy gapped gate sets do not necessarily have this property so the Markov chain is

not necessarily reversible. We will find equal bounds (up to constants) for the gaps

of both P (if Ĝ is symmetric) and PP ∗ (if Ĝ is not symmetric) below:

Theorem 3.5.13. Let µ be any 2-copy gapped distribution of gates. If µ is invariant

under Hermitian conjugation then let ∆P be the eigenvalue gap of the resulting Markov

chain matrix P . Then

∆P = Ω(∆U(4)) (3.5.21)

where ∆U(4) is the eigenvalue gap of the U(4) chain. If µ is not invariant under

Hermitian conjugation then let ∆PP ∗ be the eigenvalue gap of the resulting Markov
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chain matrix PP ∗. Then

∆PP ∗ = Ω(∆U(4)). (3.5.22)

Proof. We will use the comparison method with flows (Theorem 3.5.7). Firstly con-

sider the case where µ is closed under Hermitian conjugation i.e. Ĝ is symmetric.

We will compare P to the U(4) chain, which we call PU(4). Recall that this chain

chooses a pair at random and does nothing if the pair is 00 and chooses a random

state from {0, 1, 2, 3}2\{00} otherwise.

To apply Theorem 3.5.7, we need to construct the flows between transitions in

PU(4). We will choose paths such that only one pair is modified throughout. For

example (with n = 4), the transition 1000 → 2000 is allowed in PU(4). To construct a

path in P , we need to find allowed transitions between these two paths in P . Ĝ may

not include the transition 10 → 20 directly, however, Ĝ is irreducible on this subspace

of just two pairs. This means that a path exists and can be of maximum length 14

if it has to cycle through all intermediate states (in fact, since Ĝ is symmetric the

maximum path length is 8; all that is important here is that it is constant). For

example, the transitions 10 → 11 → 20 might be allowed. Then we could choose the

full path to be 1000 → 1100 → 2000. In this case we have chosen the path to involve

transitions pairing sites 1 and 2. However, we could equally well have chosen any

pairing; we could pair the first site with any of the others. We can choose 3 paths in

this way. For this example, the flow we want to choose will be all 3 of these paths

equally weighted. We now use this idea to construct flows between all transitions in

PU(4) to prove the result.

Let x 6= y ∈ Ω and let d(x, y) be the Hamming distance between the states

(d(x, y) gives the number of places at which x and y differ). There are two cases

where PU(4)(x, y) 6= 0:

1. d(x, y) = 2. Here we must choose a unique pairing, specified by the two sites

that differ. Make all transitions in P using this pair giving just one path.

2. d(x, y) = 1. For this case, choose all possible pairings of the changing site
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that give allowed transitions in PU(4). For each pairing, construct a path in P

modifying only this pair. If the differing site is initially non-zero then there are

n− 1 such pairings; if the differing site is initially zero then there are n− z(x)

pairings where z(x) is the number of zeroes in the state x.

All the above paths are of constant length since we have to (at most) cycle through

all states of a pair. We must now choose the weighting f(γxy) for each path such that

∑

Pxy

f(γxy) = PU(4)(x, y) (3.5.23)

where Pxy is the set of all paths from x to y constructed above. We choose the

weighting of each path to be uniform. We just need to calculate the number of paths

in Pxy to find f :

1. d(x, y) = 2. There is just one path so f(γxy) = PU(4)(x, y) = Θ(1/n2).

2. d(x, y) = 1. If the differing site is initially non-zero then PU(4)(x, y) = Θ(1/n)

and there are n− 1 paths so f(γxy) =
PU(4)(x,y)

n−1 = Θ(1/n2). If the differing site

is initially zero then PU(4)(x, y) = Θ
(

n−z(x)
n2

)

and there are n − z(x) paths so

f(γxy) =
PU(4)(x,y)

n−z(x) = Θ(1/n2).

So for all paths, f = Θ(1/n2). We now just need to know how many times each edge

(a, b) in P is used to calculate A:

A = max
a6=b,P (a,b)6=0

A(a, b) (3.5.24)

where

A(a, b) =
1

P (a, b)

∑

x 6=y,γxy∈Pxy :(a,b)∈γxy

f(γxy). (3.5.25)

We have cancelled the factors of π(x) because the stationary distribution is uniform.

We have also ignored the lengths of the paths since they are all constant.

To evaluate A(a, b), we need to know how many paths pass through each edge

(a, b). We again consider the two possibilities separately:
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1. d(a, b) = 2. Suppose a and b differ at sites i and j. Firstly, we need to count

how many transitions from x to y in PU(4) could use this edge, and then how

many paths for each transition actually use the edge.

To find which x and y could use the edge, note that x and y must differ at sites

i, j or both. Furthermore, the values at the sites other than i and j must be

the same as for a (and therefore b). There is a constant number of x, y pairs

that satisfy this condition. Now, for each x, y pair satisfying this, paths that

use this edge must use the pairing i, j for all transitions. Since in the paths we

have chosen above there is a unique path from x to y for each pairing, there is

at most one path for each x, y pair that uses edge a, b.

For d(a, b) = 2, P (a, b) = Θ(1/n2) so A(a, b) is a constant for this case.

2. d(a, b) = 1. Let there be r pairings that give allowed transitions in P between

a and b. As above, each pairing gives a constant number of paths. So the

numerator is Θ(r/n2). Further, P (a, b) = Θ(r/n2). So again A(a, b) is constant.

Combining, A is a constant so the result is proven for the case Ĝ is symmetric.

We now turn to the irreversible case. We now need to bound the gap of PP ∗ =

PP T . This chain selects two (possibly overlapping) pairs at random and applies Ĝ

to one of them and ĜT to the other. We can use the above exactly by choosing Ĝ to

perform the transitions above and ĜT to just loop the states back to themselves. By

aperiodicity (the greatest common divisor of loop lengths is 1), we can always find

constant length paths that do this.

Now we need to know the gap of the U(4) chain. We can, by a simple application

of the comparison theorem, show it is Ω(1/n2). However, in the second half of this

chapter we show it is Θ(1/n). This gives us (using Theorem 3.5.5):

Corollary 3.5.14. The Markov chain P has mixing time O(n(n + log 1/ǫ)) and 2-

norm mixing time O(n log 1/ǫ).

We conjecture that the mixing time (as well as Lemma 3.5.2) can be tightened to

Θ(n log n
ǫ ), which is asymptotically the same as for the U(4) case:
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Conjecture 3.5.15. The second moments for the case of general 2-copy gapped dis-

tributions have 1-norm mixing time Θ(n log n
ǫ ).

It seems likely that an extension of our techniques in Section 3.6 could be used to

prove this.

Combining the convergence results we have proved our general result Lemma 3.3.2:

Proof of Lemma 3.3.2. Combining Corollary 3.5.14 (for the γ(p, p) terms) and Lemma

3.5.2 (for the γ(p1, p2), p1 6= p2 terms) proves the result.

We have now shown that the first and second moments of random circuits converge

quickly. For the remainder of the chapter we prove the tight bound for the gap and

mixing time of the U(4) case and show how mixing time bounds relate to the closeness

of the 2-design to an exact design. Only for the U(4) case is the matrix Ĝ a projector

so in this sense the U(4) random circuit is the most fundamental. While we expect

the above mixing time bound is not tight, we can prove a tight mixing time result

for the U(4) case. However, using our definition of an approximate k-design, the gap

rather than the mixing time governs the degree of approximation.

3.6 Tight Analysis for the U(4) Case

We have already found tight bounds for the first moments in Lemma 3.5.1: just set

∆ = 1.

3.6.1 Second Moments Convergence

We need to prove a result analogous to Lemma 3.5.2 for the terms σp1 ⊗ σp2 where

p1 6= p2. We already have a tight bound for the 2-norm decay, by setting ∆ = 1 into

Lemma 3.5.2. We tighten the 1-norm bound:

Lemma 3.6.1. After O(n log n
ǫ ) steps

∑

p1 6=p2
EW |γW (p1, p2)| ≤ ǫ (3.6.1)
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Proof. We will split the random circuits up into classes depending on how many qubits

have been hit. Let H be the random variable giving the number of different qubits

that have been hit. We can work out the distribution of H and bound the sum of

|γW (p1, p2)| for each outcome.

Firstly we have, after t steps,

P(H ≤ h) ≤
(

n

h

)(

h(h − 1)

n(n− 1)

)t

≤
(

n

h

)

(h/n)t.

Now, for each qubit hit, each coefficient which has p1 and p2 differing in this place is

set to zero. So after h have been hit, there are only (at most) 16(n−h) terms in the sum

in Eqn. 3.6.1. As before, the state is a physical state, tr ρ2 ≤ 1 so
∑

p1p2
γ2(p1, p2) ≤ 1

so
∑

p1p2
|γ(p1, p2)| ≤

√
N if there are at mostN non-zero terms in the sum. Therefore

we have, after t steps,

∑

p1 6=p2
EW |γW (p1, p2)| ≤

n−1
∑

h=1

P(H = h)16(n−h)/2

≤
n−1
∑

h=1

P(H ≤ h)4(n−h)

≤
n−1
∑

h=1

(

n

h

)

(h/n)t4(n−h)

=
n−1
∑

h=1

(

n

h

)

(1 − h/n)t4h h→ n− h

≤
n−1
∑

h=1

(

n

h

)

exp(−ht/n)4h.

Now, let t = n ln n
ǫ :

∑

p1 6=p2
EW |γW (p1, p2)| ≤

n−1
∑

h=1

(

n

h

)(

4ǫ

n

)h

=

(

1 +
4ǫ

n

)n

− 1 −
(

4ǫ

n

)n

= O(ǫ)
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where the last line follows from the binomial theorem.

This, combined with the mixing time result we prove below, completes the proof

that the second moments of the random circuit converge in time O(n log n
ǫ ).

3.6.2 Markov Chain of Coefficients

The Markov chain acting on the coefficients is reducible because the state {0}n is

isolated. However, if we remove it then the chain becomes irreducible. The presence

of self loops implies aperiodicity therefore the chain is ergodic. We have already seen

that the chain converges to the Haar uniform distribution (in Section 3.1.1) therefore

the stationary state is the uniform state π(x) = 1/(4n−1). Further, since the chain is

symmetric and has uniform stationary distribution, the chain satisfies detailed balance

(Eqn. 3.5.8) so is reversible. We now turn to obtaining bounds on the mixing time of

this chain.

We want to show that the full chain converges to stationarity in time Θ(n log n
ǫ ).

To prove this, we will construct another chain called the zero chain. This is the chain

that counts the number of zeroes in the state. Since it is the zeroes that slow down

the mixing, this chain will accurately describe the mixing time of the full chain.

Lemma 3.6.2. The zero chain has transition matrix P on state space (we count

non-zero positions) Ω = {1, 2, . . . , n}.

P (x, y) =











































1 − 2x(3n−2x−1)
5n(n−1) y = x

2x(x−1)
5n(n−1) y = x− 1

6x(n−x)
5n(n−1) y = x+ 1

0 otherwise

(3.6.2)

for 1 ≤ x, y ≤ n.

Proof. Suppose there are n−x zeroes (so there are x non-zeroes). Then the only way

the number of zeroes can decrease (i.e. for x to increase) is if a non-zero item is paired
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with a zero item and one of the 9 (out of 15) new states is chosen with no zeroes. The

probability of choosing such a pair is 2x(n−x)
n(n−1) so the overall probability is 9

15
2x(n−x)
n(n−1) .

The number of zeroes can increase only if a pair of non-zero items is chosen and one

of the 6 states is chosen with one zero. The probability of this occurring is 6
15

x(x−1)
n(n−1) .

The probability of the number of zeroes remaining unchanged is simply calculated

by requiring the probabilities to sum to 1.

We see that the zero chain is a one-dimensional random walk on the line. It is a

lazy random walk because the probability of moving at each step is < 1. However, as

the number of zeroes decreases, the probability of moving increases monotonically:

1 − P (x, x) =
2x(3n − 2x− 1)

5n(n− 1)
≥ 2x/5n. (3.6.3)

Lemma 3.6.3. The stationary distribution of the zero chain is

π0(x) =
3x
(n
x

)

4n − 1
. (3.6.4)

Proof. This can be proven by multiplying the transition matrix in Lemma 3.6.2 by

the state Eqn. 3.6.4. Alternatively, it can be proven by counting the number of states

with n− x zeroes. There are
(

n
x

)

ways of choosing which sites to make non-zero and

each non-zero site can be one of three possibilities: 1, 2 or 3. The total number of

states is 4n − 1, which gives the result.

Below we will prove the following theorem:

Theorem 3.6.4. The zero chain mixes in time Θ(n log n
ǫ ).

We prove this using direct arguments about the convergence of the random walk.

However, we also include a less complex method that only bounds the gap:

Theorem 3.6.5. The zero chain has gap Ω(1/n).

This only implies the mixing time is O(n(n + log 1/ǫ)) which is weaker than

Theorem 3.6.4, although still sufficient to prove our main result Theorem 3.3.1,
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using a modification of Corollary 3.6.7 to show that the full chain mixing time is

O(n(n+ log 1/ǫ)).

Knowing the gap allows us to easily work out the 2-norm mixing time:

Theorem 3.6.6. The zero chain has 2-norm mixing time O(n log 1/ǫ).

Proof. Use the bound on the gap in Theorem 3.6.5 and Eqn. 3.5.13.

Before proving Theorem 3.6.4, we will show how the mixing time of the full chain

follows from this.

Corollary 3.6.7. The full chain mixes in time Θ(n log n
ǫ ).

Proof. Once the zero chain has approximately mixed, the distribution of zeroes is

almost correct. We need to prove that the distribution of non-zeroes is correct after

O(n log n
ǫ ) steps too.

Once each site of the full chain has been hit, meaning it is chosen and paired

with another site so not both equal zero, the chain has mixed. This is because, after

each site has been hit, the probability distribution over the states is uniform. When

the zero chain has approximately mixed, a constant fraction of sites are zero so the

probability of hitting a site at each step is Θ(1/n). By the coupon collector argument,

each site will have been hit with probability at least 1 − ǫ in time time O(n log n
ǫ ).

Once the zero chain has mixed to ǫ′, we can run the full chain this extra number of

steps to ensure each site has been hit with high probability. Since the mixing of the

zero chain only increases with time, the distance to stationarity of the full chain is

now 1 − ǫ− ǫ′. We make this formal below.

After t0 = O(n log n
ǫ′ ) steps, the number of zeroes is ǫ′-close to the stationary

distribution π0 by Theorem 3.6.4 and only gets closer with more steps since the dis-

tance to stationarity decreases monotonically. The stationary distribution Eqn. 3.6.4

is approximately a Gaussian peaked at 3n/4 with O(n) variance. This means that,

with high probability, the number of non-zeroes is close to 3n/4. We will in fact only

need that there is at least a constant fraction of non-zeroes; with probability at least

1 − ǫ′ − exp(−Ω(n)) there will be at least n/2.
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To prove the mixing time, we run the chain for time t0 so the zero chain mixes to

ǫ′. Then run for t1 additional steps. Let Hi,t be the event that site i is hit at step t.

Let Hi = ∪t0+t1
t=t0+1Hi,t and H = ∩ni=1Hi. We want to show P(H) is close to 1, or, in

other words, that all sites are hit with high probability. Further let Xt be the random

variable giving the number of non-zeroes at step t.

If at step t− 1 site i is non-zero then the event Hi,t occurs if the qubit is chosen,

which occurs with probability 2/n. If, however, it was zero then it must be paired

with a non-zero thing for Hi,t to hold. Conditioned on any history with Xt−1 ≥ n/2,

this probability is ≥ 1/n. In particular, we can condition on not having previously

hit i and the bound does not change. Combining we have

P



Hc
i,t

∣

∣

∣

∣

[Xt−1 ≥ n/2]
⋂





t−1
⋂

t′=t0+1

Hc
i,t′







 ≤ 1 − 1/n.

Then, after t1 extra steps,

P

(

Hc
i

∣

∣

∣

∣

t0+t1−1
⋂

t=t0

[Xt ≥ n/2]

)

≤ (1 − 1/n)t1

which, using the union bound, gives

P

(

Hc

∣

∣

∣

∣

t0+t1−1
⋂

t=t0

[Xt ≥ n/2]

)

≤ n(1 − 1/n)t1 .

Now, since the zero chain has mixed to ǫ′,

P





t0+t1−1
⋂

t=t0

[Xt ≥ n/2]



 ≤ t1





n−1
∑

x=n/2

π0(x) + ǫ′



 ≤ t1
(

exp(−O(n)) + ǫ′
)

so

P(Hc) ≤ n(1 − 1/n)t1 + t1
(

exp(−O(n)) + ǫ′
)

.

Now, choose t1 = n ln 2n
ǫ so that P(Hc) ≤ δ where δ = ǫ + t1 (exp(−O(n)) + ǫ′).

Choose ǫ = 1/n and ǫ′ = 1/n3 so that δ is 1/poly(n). Now, using the bound on
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P(Hc), we can write the state v after t1 = O(n log n) steps as

v = (1 − δ)π + δπ′

where π is the stationary distribution and π′ is any other distribution. Using this,

||v − π|| ≤ δ.

We now apply Lemma 3.9.13 to show that after O(n log n
ǫ ) steps the distance to

stationarity of the full chain is ǫ.

3.6.3 Proof of Theorem 3.6.4

We will now proceed to prove Theorem 3.6.4. We present an outline of the proof here;

the details are in Section 3.9.1.

Firstly, note that by the coupon collector argument, the lower bound on the time

is Ω(n log n). We need to prove an upper bound equal to this. Intuition says that

the mixing time should take time O(n log n) because the walk has to move a distance

Θ(n) and the waiting time at each step is proportional to n, n/2, n/3, . . . which sums

to O(n log n), provided each site is not hit too often. We will show that this intuition

is correct using Chernoff bound and log-Sobolev (see later) arguments.

We will first work out concentration results of the position after some number of

accelerated steps. The zero chain has some probability of staying still at each step.

The accelerated chain is the zero chain conditioned on moving at each step. We define

the accelerated chain by its transition matrix:
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Definition 3.6.8. The transition matrix for the accelerated chain is

Pa(x, y) =











































0 y = x

x−1
3n−2x−1 y = x− 1

3(n−x)
3n−2x−1 y = x+ 1

0 otherwise.

(3.6.5)

We use the accelerated chain in the proof to firstly prove the accelerated chain

mixes quickly, then to bound the waiting time at each step to obtain a mixing time

bound for the zero chain.

To prove the mixing time bound, we will split the walk up into three phases. We

will split the state space into three (slightly overlapping) parts and the phase can

begin at any point within that space. So each phase has a state space Ωi ⊂ [1, n],

an entry space Ei ⊂ Ωi and an exit condition Ti. We say that a phase completes

successfully if the exit condition is satisfied in time O(n log n) for an initial state

within the entry space. When the exit condition is satisfied, the walk moves onto the

next phase.

The phases are:

1. Ω1 = [1, nδ ] for some constant δ with 0 < δ < 1/2. E1 = Ω1 (i.e. it can

start anywhere) and T1 is satisfied when the walk reaches nδ. For this part,

the probability of moving backwards (gaining zeroes) is O(nδ−1) so the walk

progresses forwards at each step with high probability. This is proven in Lemma

3.9.6. We show that the waiting time is O(n log n) in Lemma 3.9.7.

2. Ω2 = [nδ/2, θn] for some constant θ with 0 < θ < 3/4. E2 = [nδ, θn] and

T2 is satisfied when the walk reaches θn. Here the walk can move both ways

with constant probability but there is a Ω(1) forward bias. Here we use a
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monotonicity argument: the probability of moving forward at each step is

p(x) =
3(n− x)

3n− 2x− 1

≥ 3(n− x)

3n− 2x

≥ 3(1 − θ)

3 − 2θ
.

If we model this random walk as a walk with constant bias equal to 3(1−θ)
3−2θ we

will find an upper bound on the mixing time since mixing time increases mono-

tonically with decreasing bias. Further, the waiting time at x = a stochastically

dominates the waiting time at x = b for b ≥ a. The true bias decreases with po-

sition so the walk with constant bias spends more time at the early steps. Thus

the position of this simplified walk is stochastically dominated by the position of

the real walk while the waiting time stochastically dominates the waiting time

of the real walk.

3. Ω3 = [θ2n, n] and E3 = [θn, n]. T3 is satisfied when this restricted part of the

chain has mixed to distance ǫ. Here the bias decreases to zero as the walk

approaches 3n/4 but the moving probability is a constant. We show that this

walk mixes quickly by bounding the log-Sobolev constant of the chain.

Showing these three phases complete successfully will give a mixing time bound for

the whole chain.

We now prove in Section 3.9 that the phases complete successfully with probability

at least 1 − 1/poly(n):

Lemma 3.6.9.

P(Phase 1 completes successfully) ≥ 1 − n2δ−1 − 2n−δ
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Lemma 3.6.10.

P(Phase 2 completes successfully) ≥

1 − exp

(

−2

3
µθn

)

−
(

4

θn

) 3
2µ

−
2 exp

(

−µnδ

4

)

1 − exp(−µ/2) − (q/p)n
δ/2

where µ = 6(1−θ)
3−2θ − 1.

Lemma 3.6.11.

P(Phase 3 completes successfully) ≥ 1 −
(

θ

3(2 − θ)

)θn/2

We can now finally combine to prove our result:

Proof of Theorem 3.6.4. The stationary distribution has exponentially small weight

in the tail with lots of zeroes. We show that, provided the number of zeroes is within

phase 3, the walk mixes in time O(n log n
ǫ ). We also show that if the number of zeroes

is initially within phase 1 or 2, after O(n log n) steps the walk is in phase 3 with high

probability. We can work out the distance to the stationary distribution as follows.

Let pf be the probability of failure. This is the sum of the error probabilities

in Lemmas 3.6.9, 3.6.10 and 3.6.11. The key point is that pf = 1/poly(n). Then

after O(n log n
ǫ ) steps (the sum of the number of steps in the 3 phases), the state is

equal to (1 − pf )v3 + pfv
′ where v3 is the state in the phase 3 space and v′ is any

other distribution, which occurs if any one of the phases fails. Since the distance to

stationarity in phase 3 is ǫ, ||v3 − π3|| ≤ ǫ, where π3 is the stationary distribution on

the state space of phase 3. In Lemma 3.9.11 we show that π3(x) = π(x)/(1−w) where

w =
∑θn/2−1

x=1 π(x). Since π(x) is exponentially small in this range, w is exponentially

small in n. Now use the triangle inequality to find

||v3 − π|| ≤ ||v3 − π3|| + ||π3 − π||. (3.6.6)

Since the chain in phase 3 has mixed to ǫ, the first term is ≤ ǫ. We can evaluate
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||π3 − π||:

||π3 − π|| =
1

2

n
∑

x=1

||π3(x) − π(x)||

=
1

2





θn/2−1
∑

x=1

π(x) +

n
∑

x=θn/2

(π(x)/(1 −w) − π(x))





=
1

2
(w + 1 − (1 − w)) = w.

So now,

||(1 − pf )v3 + pfv
′ − π|| = ||(1 − pf )(v3 − π) + pf (v

′ − π)||

≤ (1 − pf )||v3 − π|| + pf ||v′ − π||

≤ (1 − pf )(ǫ+ w) + pf

≤ δ

where δ = ǫ + w + pf . We are free to choose ǫ: choose it to be 1/n so that δ is

1/poly(n). So now the running time to get a distance δ is t = O(n log n). We then

apply Lemma 3.9.13 to obtain the result.

This concludes the proof of Theorem 3.6.4 so Corollary 3.6.7 is proved.

We have now proven Lemma 3.3.2 and consequently Corollary 3.3.3. We are now

ready to show how Theorem 3.3.1 follows, but first give the alternative proof that the

zero chain gap is Ω(1/n). The remainder of the proof of Theorem 3.3.1 is in Section

3.7.

3.6.4 Proof of Theorem 3.6.5

Here we prove that the gap of the zero chain is Ω(1/n). While this can be deduced

from Theorem 3.6.4 and provides weaker mixing time bounds, this bound on the gap

is sufficient to prove our main result so we present it as a simpler alternative proof.

We use the method of decomposition (Theorem 3.5.9), whereby the Markov chain
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is split up into disjoint state spaces. This works well here because, for the first part of

the walk with many zeroes, the walker remains stationary most of the time whereas

when there is a constant fraction of zeroes, the walker moves on most steps. Using the

decomposition method allows us to use different techniques in these different regimes.

We therefore divide the walk up into two parts, P1 and P2, which are shown

in Figure 3.2. The chain P̄ is the chain that links the two parts, according to the

decomposition theorem, Theorem 3.5.9.

20406080

0.02

0.04

0.06

0.08

P1 P2

P̄

π(x)

l 3n/41 n

Figure 3.2: The decomposition of the zero chain into P1 and P2. The graph plotted
is the zero chain stationary distribution π(x).

• P1: Let P1 have state space Ω1 = {1, . . . ,m}. This chain has transition matrix

P1(x, y) =



























0 x > m or y > m

1 − P (m,m− 1) x = y = m

P (x, y) otherwise

(3.6.7)

and stationary distribution

π1(x) =
π(x)

bm
(3.6.8)

where

bm =

m
∑

x=1

π(x). (3.6.9)
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• P2: Let P2 be on state space Ω2 = {m + 1, . . . , n}. This chain has transition

matrix

P2(x, y) =



























0 x ≤ m or y ≤ m

1 − P (m+ 1,m+ 2) x = y = m+ 1

P (x, y) otherwise

(3.6.10)

and stationary distribution

π2(x) =
π(x)

cm
(3.6.11)

where

cm =

n
∑

x=m+1

π(x) = 1 − bm. (3.6.12)

We will take m = θn where 0 < θ < 0.49 (we could in principle just have θ < 3/4

but this restriction makes the calculations simpler; see Lemma 3.6.12 for the origin

of the upper bound on θ). Note that P2 is the same as phase 3 used in the direct

mixing time proof (up to relabelling m + 1 to m). Therefore we already have, from

the proof of Lemma 3.9.11, that the gap ∆2 of P2 is Ω(1/n). To find the gap of the

whole zero chain we need to find the gaps ∆1 and ∆̄. An ingredient to proving this

is an exponential bound on the tail of the stationary distribution:

Lemma 3.6.12.

π(θn) ≤ 2

(

1

4

(

3e

θ

)θ
)n

(3.6.13)

and for θ < θ0 ≈ 0.49, π(θn) = e−Ω(n).

Proof. Use
(

n
k

)

≤
(

ne
k

)k
and 4n − 1 ≥ 4n

2 to prove the bound. When 1
4

(

3e
θ

)θ
< 1,

π(θn) is exponentially small. θ0 is the solution to 1
4

(

3e
θ

)θ
= 1.

From this we can bound the gap of P̄ :

Lemma 3.6.13. The gap of P̄ is Ω(1/n).
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Proof. We first need to work out the transition matrix for P̄ . From the definition of

P̄ in the decomposition theorem,

P̄ (1, 2) =
1

bm
π(m)P (m,m+ 1)

P̄ (2, 1) =
1

cm
π(m+ 1)P (m+ 1,m).

We can find the two diagonal elements using the fact that the transition matrix is

stochastic. Because the zero chain is reversible, P̄ is also reversible and by direct

calculation of the eigenvalues has gap

∆̄ = 1 − |1 − (P̄ (1, 2) + P̄ (2, 1))|. (3.6.14)

However, we can remove the modulus signs since, for n large enough, P̄ (1, 2) +

P̄ (2, 1) ≤ 1. This is because, using reversibility and π(m) ≤ bm

P̄ (1, 2) + P̄ (2, 1) =
π(m)P (m,m+ 1)

cmbm
≤ P (m,m+ 1)

cm
. (3.6.15)

Using Lemma 3.6.12 we find that cm ≥ 1 − e−Ω(n) for m = θn and θ < θ0. Using

P (m,m+ 1) ≤ 3/5, we find that for n large enough, P̄ (1, 2) + P̄ (2, 1) ≤ 1.

Now we need to show that P̄ (1, 2) + P̄ (2, 1) = Ω(1). Again using Lemma 3.6.12,
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we find P̄ (2, 1) = e−Ω(n). We just need a bound on P̄ (1, 2). First we bound π(m)/bm:

π(m)

bm
=

π(m)
∑m

x=1 π(x)

=
1

∑m
x=1

π(x)
π(m)

=
1

∑m
x=1 3x−m (n

x)
(n

m)

≥ 1
∑m

x=1 3x−m

=
1

∑m−1
x=0 3−x

≥ 1
∑∞

x=0 3−x

=
2

3

using
(n
x

)

≤
(n
m

)

for x ≤ m ≤ n/2. For m = θn, we have P (m,m + 1) = Ω(1) so

overall P̄ (1, 2) = Ω(1), proving the bound on the gap.

Lemma 3.6.14. The gap of P1 is Ω(1/n).

Proof. We use the comparison method with length functions as stated in Theorem

3.5.8. The length function we choose is, for x ≤ y, l(x, y) = rx for some constant r

satisfying 0 < r < 1.

Let

Az =
1

l(z, z + 1)π1(z)P1(z, z + 1)

z
∑

x=1

m
∑

y=z+1

π1(x)π1(y)

y−1
∑

s=x

l(s, s+ 1). (3.6.16)

Then, according to Theorem 3.5.8, ∆1 ≥ 1/A where A = maxz Az. We need to find

an upper bound for A:
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Az =
1

rzπ(z)P (z, z + 1)bm

z
∑

x=1

m
∑

y=z+1

π(x)π(y)
rx − ry

1 − r

=
1

rz(1 − r)π(z)P (z, z + 1)bm

(

(bm − bz)

z
∑

x=1

rxπ(x) − bz

m
∑

x=z+1

rxπ(x)

)

=
1

rz(1 − r)π(z)P (z, z + 1)bm

(

(1 − bz − (1 − bm))

z
∑

x=1

rxπ(x) − (1 − (1 − bz))

m
∑

x=z+1

rxπ(x)

)

=
1

rz(1 − r)π(z)P (z, z + 1)bm

(

(1 − bz)

m
∑

x=1

rxπ(x) − (1 − bm)

z
∑

x=1

rxπ(x) −
m
∑

x=z+1

rxπ(x)

)

≤ 1

rz(1 − r)π(z)P (z, z + 1)bm

(

m
∑

x=1

rxπ(x) − (1 − bm)
z
∑

x=1

rxπ(x) −
m
∑

x=z+1

rxπ(x)

)

=

∑z
x=1 r

xπ(x)

rz(1 − r)π(z)P (z, z + 1)

where the inequality comes from 1−bz ≤ 1. Now let hz(r) = 1
rzπ(z)

∑z
x=1 r

xπ(x) then,

plugging in the value of P (z, z + 1), we find

Az ≤
5n(n− 1)

6z(n − z)(1 − r)
hz(r).

Now, maxz
5n(n−1)

6z(n−z)(1−r) = O(n) so showing maxz hz(r) = O(1) is sufficient the prove

the bound we require. We evaluate hz recursively:

Firstly,

hz(r) = 1 +
1

rzπ(z)

z−1
∑

x=1

rxπ(x).
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Then evaluate the sum:

z−1
∑

x=1

rxπ(x) =
z−1
∑

x=1

rxπ(x)

rx+1π(x+ 1)
rx+1π(x+ 1)

=
1

3r

z−1
∑

x=1

x+ 1

n− x
rx+1π(x+ 1)

=
1

3r

z
∑

x=2

x

n− x+ 1
rxπ(x)

<
1

3r

z
∑

x=1

x

n− x+ 1
rxπ(x)

<
1

3r

z

n− z + 1

z
∑

x=1

rxπ(x).

Combining,

hz(r) < 1 +
z

3r(n− z + 1)
hz(r)

or

hz(r) <
1

1 − z
3r(n−z+1)

.

Since 1 ≤ z ≤ θn, hz(r) is constant in this range, proving the result.

We can now combine the results to prove the bound on the zero chain gap:

Proof of Theorem 3.6.5. Using Lemmas 3.6.14, 3.9.11 and 3.6.13 together with The-

orem 3.5.9 proves the result.

3.7 Main Result

We will now show how the mixing time results imply that we have an approximate

2-design.

Proof of Theorem 3.3.1: We will go via the 2-norm since this gives a tight bound

when working with the Pauli operators. We write ρ in the Pauli basis as usual (as

Eqn. 3.2.3) and note that ρ is not necessarily a physical state so the coefficients may
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not be real.

||GW − GH ||2⋄ = sup
ρ

1

||ρ||21
||(GW ⊗ id22n)(ρ) − (GH ⊗ id22n)(ρ)||21

≤ 24n sup
ρ

1

||ρ||21
||(GW ⊗ id22n)(ρ) − (GH ⊗ id22n)(ρ)||22

= sup
ρ

1

||ρ||21

∣

∣

∣

∣

∣

∣

∣

∣

∑

p1,p2,p3,p4
p1p2 6=00

γ0(p1, p2, p3, p4)(GW (σp1 ⊗ σp2) ⊗ σp3 ⊗ σp4

− GH(σp1 ⊗ σp2) ⊗ σp3 ⊗ σp4)

∣

∣

∣

∣

∣

∣

∣

∣

2

2

Now, write (for p1p2 6= 00) GW ( 1
2nσp1 ⊗ σp2) = 1

2n

∑

q1,q2
q1q2 6=00

gt(q1, q2; p1, p2)σq1 ⊗ σq2.

We get

sup
ρ

1

||ρ||21

∣

∣

∣

∣

∣

∣

∣

∣

∑

p1,p2,p3,p4,q1,q2
p1p2 6=00,q1q2 6=00

γ0(p1, p2, p3, p4)

(

gt(q1, q2; p1, p2) −
δq1q2δp1p2
2n(2n + 1)

)

σq1 ⊗ σq2 ⊗ σp3 ⊗ σp4

∣

∣

∣

∣

∣

∣

∣

∣

2

2

= 24n sup
ρ

1

||ρ||21

∑

p1,p2,p3,p4,q1,q2
p1p2 6=00,q1q2 6=00

|γ0(p1, p2, p3, p4)|2
(

gt(q1, q2; p1, p2) −
δq1q2δp1p2
2n(2n + 1)

)2

≤ 24nǫ2 sup
ρ

∑

p1,p2,p3,p4
p1p2 6=00

|γ0(p1, p2, p3, p4)|2

||ρ||21

≤ 24nǫ2 sup
ρ

||ρ||22
||ρ||21

= 24nǫ2

where the first equality comes from the orthogonality of the Pauli operators under

the Hilbert-Schmidt inner product. This proves the result for the diamond norm,

Definition 2.2.10. For the distance measure defined in Definition 2.2.11 (TWIRL),

the argument in [DCEL06] can be used together with the 1-norm bound to prove the

result.
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3.8 Conclusions

We have proved tight convergence results for the first two moments of a random

circuit. We have used this to show that random circuits are efficient approximate

1- and 2-unitary designs. Our framework readily generalises to k-designs for any k

and the next step in this research is to prove that random circuits give approximate

k-designs for all k.

We have shown that, provided the random circuit uses gates from a universal

gate set that is also universal on U(4), the circuit is still an efficient 2-design. We

also see that the random circuit with gates chosen uniformly from U(4) is the most

natural model. We note that the gates from U(4) can be replaced by gates from any

approximate 2-design on two qubits without any change to the asymptotic convergence

properties.

Finally, random circuits are interesting physical models in their own right. The

original purpose of [ODP07] was to answer the physical question of how quickly en-

tanglement grows in a system with random two party interactions. Lemma 3.3.2(i)

shows that O(n(n + log 1/ǫ)) steps suffice (in contrast to O(n2(n + log 1/ǫ)) which

they prove) to give almost maximal entanglement in such a system.

3.9 Proofs

3.9.1 Zero chain mixing time proofs

Asymmetric Simple Random Walk

We will use some facts about asymmetric simple random walks i.e. a random walk on

a 1D line with probability p of moving right at each step and probability q = 1− p of

moving left.

The position of the walk after k steps is tightly concentrated around k(p− q):

Lemma 3.9.1. Let Xk be the random variable giving the position of a random walk

after k steps starting at the origin with probability p of moving right and probability
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q = 1 − p of moving left. Let µ = p− q. Then for any η > 0,

P(Xk ≥ µk + η) ≤ exp

(

− η
2

2k

)

and

P(Xk ≤ µk − η) ≤ exp

(

− η
2

2k

)

.

Proof. The standard Chernoff bound for 0/1 variables Ỹi gives, with Ỹi equal to 1

with probability p and for Yk =
∑k

i=1 Ỹi,

P(Yk ≥ kp+ η) ≤ exp

(

−2η2

k

)

P(Yk ≤ kp− η) ≤ exp

(

−2η2

k

)

.

For our case, set Ỹi = 2X̃i − 1 to give the desired result.

This result is for a walk with constant bias. We will need a result for a walk with

varying (but bounded from below) bias:

Lemma 3.9.2. Let Xk be the random variable giving the position of a random walk

after k steps starting at the origin with probability pi ≥ p of moving right and proba-

bility qi ≤ p of moving left at step i. Let µ = p− (1 − p). Then for any η > 0,

P(Xk ≥ µk + η) ≤ exp

(

− η
2

2k

)

and

P(Xk ≤ µk − η) ≤ exp

(

− η
2

2k

)

.

Proof. Let Ỹi be a random variable equal to 1 with probability p and 0 with probability

1 − p. Then let Z̃i be a random variable equal to 1 with probability pi and 0 with

probability 1− pi. Let Yk =
∑k

i=1 Ỹi and Zk =
∑k

i=1 Z̃i. Then following the standard
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Chernoff bound derivation (for λ > 0),

P(Zk ≥ kp+ η) = P

(

eλZk ≥ eλ(kp+η)
)

≤ eλ(kp+η)

EeλZk

≤ eλ(kp+η)

EeλYk

≤ exp

(

−2η2

k

)

.

We can then, as above, set Z̃i = 2X̃i − 1. The calculation is similar for the bound on

P(Xk ≤ µk − η).

From Lemma 3.9.1 we can prove a result about how often each site is visited. If

the walk runs for t steps the walk is at position tµ with high probability so we might

expect from symmetry that each site will have been visited about 1/µ times. Below

is a weaker concentration result of this form but is strong enough for our purposes.

It says that the amount of time spent ≤ x is about x/µ.

Lemma 3.9.3. For γ > 2 and integer x > 0,

P

( ∞
∑

k=1

I(Xk ≤ x) ≥ γx/µ

)

≤ 2 exp

(

−µx(γ − 2)

2

)

,

where I is the indicator function.

Proof. Let Yk = I(Xk ≤ x). From Lemma 3.9.1,

P(Yk = 0) ≤ exp

(

−(kµ− x)2

2k

)

for k ≤ x/µ and

P(Yk = 1) ≤ exp

(

−(kµ− x)2

2k

)

for k ≥ x/µ.
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Then the quantity to evaluate is

P

( ∞
∑

k=1

Yk ≥ γx/µ

)

.

We use a standard trick to split this into two mutually exclusive possibilities and then

bound the probabilities separately. Write

P

( ∞
∑

k=1

Yk ≥ γx/µ

)

= P





( ∞
∑

k=1

Yk ≥ γx/µ

)

⋂





γx/µ
⋂

j=1

[Yj = 1]







+

P





( ∞
∑

k=1

Yk ≥ γx/µ

)

⋂





γx/µ
⋃

j=1

[Yj = 0]







 . (3.9.1)

We can bound the first term:

P





( ∞
∑

k=1

Yk ≥ γx/µ

)

⋂





γx/µ
⋂

j=1

[Yj = 1]







 = P





γx/µ
⋂

k=1

Yk = 1





≤ P
(

Yγx/µ = 1
)

≤ exp

(

−µx(γ − 1)2

2γ

)

≤ exp

(

−µx(γ − 2)

2

)

The second term similarly:

P





( ∞
∑

k=1

Yk ≥ γx/µ

)

⋂





γx/µ
⋃

j=1

[Yj = 0]







 ≤ P







∞
⋃

k= γx
µ

+1

[Yk = 1]







≤
∞
∑

k= γx
µ

+1

P (Yk = 1)

≤
∞
∑

k= γx
µ

+1

exp

(

−(kµ− x)2

2k

)

≤ exp

(

−µx(γ − 2)

2

)

.
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The last fact we need about asymmetric simple random walks is a bound on the

probability of going backwards. If p > q then we expect the walk to go right in the

majority of steps. The probability of going left a distance a is exponentially small in

a. This is a well known result, often stated as part of the gambler’s ruin problem:

Lemma 3.9.4 (See e.g. [GW86]). Consider an asymmetric simple random walk that

starts at a > 0 and has an absorbing barrier at the origin. The probability that the

walk eventually absorbs at the origin is 1 if p ≤ q and (q/p)a otherwise.

This result is for infinitely many steps. If we only consider finitely many steps,

the probability of absorption must be at most this.

Waiting Time

From above we saw that the probability of moving is at least 2x/5n when at position

x. The length of time spent waiting at each step is therefore stochastically dominated

by a geometric distribution with parameter 2x/5n. The following concentration result

will be used to bound the waiting time (in our case β = 2/5):

Lemma 3.9.5. Let the waiting time at each site be W (x) ∼ Geo (βx/n), the total

waiting time W =
∑t

x=1W (x) and t′ = n ln t
β . Then

P(W ≥ Ct′) ≤ 2t(1−C)/2.

Proof. By Markov’s inequality for λ > 0,

P(W ≥ Ct′) ≤ EeλW

eλCt′
.

The W (x) are independent so

EeλW =

t
∏

x=1

EeλW (x).
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Summing the geometric series we find

EeλW (x) =
βx
n

e−λ − 1 + βx
n

provided eλ < 1

1−βx
n

for all 1 ≤ x ≤ t. Therefore eλ is of the form 1

1−αβ
n

where

0 < α < 1. With this,

EeλW (x) =
x

x− α

and

EeλW =
t!Γ(1 − α)

Γ(t+ 1 − α)
.

We are free to choose α within its range to optimise the bound. However, for simplicity,

we will choose α = 1/2. From Lemma 3.9.12,

EeλW ≤ 2
√
t.

The result follows, using the inequality 1 − x ≤ e−x.

Phase 1

Here we prove that phase 1 completes successfully with high probability. The bias

here is large so the walk moves right every time with high probability:

Lemma 3.9.6. The probability that the accelerated chain moves right at each step,

starting from x = 1 for t steps, is at least

1 − t2/n.
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Proof. The probability of moving right at each step is

t
∏

x=1

3(n− x)

3n− 2x− 1
=

(n− 2)(n − 3) . . . (n− t)

(n− 5/3)(n − 7/3) . . . (n− (2t+ 1)/3)

≥ (1 − 2/n)(1 − 3/n) . . . (1 − t/n)

≥ (1 − t/n)t ≥ 1 − t2/n

Let t = nδ. Provided δ < 1/2 this probability is close to one. Therefore, with high

probability, the walk moves to nδ in nδ steps. Using Lemma 3.9.5 the waiting time

can be bounded:

Lemma 3.9.7. Let W (1) be the waiting time during phase 1. Let H be the event that

the walk moves right at each step. Then

P

(

W (1) ≥ Ct′|H
)

≤ 2nδ(1−C)/2 (3.9.2)

where t′ = 5δn lnn
2 .

Proof. This follows directly from Lemma 3.9.5, since each site is hit exactly once.

We now combine these two lemmas to prove that phase 1 completes successfully

with high probability:

Proof of Lemma 3.6.9. In Lemma 3.9.6, we show that in nδ accelerated steps, the

walk moves right at each step with probability ≥ 1− n2δ−1. Call this event H. Then

P(H) ≥ 1 − n2δ−1. Lemma 3.9.7 shows that the waiting time W (1) is bounded with

high probability (choosing C = 3):

P(W (1) ≤ 15nδ lnn/2|H) ≥ 1 − 2n−δ.

92



Then we can bound the probability of phase 1 completing successfully:

P(Phase 1 completes successfully) ≥ P(H ∩W (1) ≤ 15nδ lnn/2)

= P(H)P(W (1) ≤ 15nδ lnn/2|H)

≥ (1 − n2δ−1)(1 − 2n−δ)

≥ 1 − n2δ−1 − 2n−δ.

Phase 2

Phase 2 starts at nδ/2 and finishes when the walk has reached θn for some constant

0 < θ < 3/4. We show that, with high probability, this also takes time O(n log n).

The probability of moving right during this phase is at least p = 3(1−θ)
3−2θ . We first

define some constants that we will derive bounds in terms of. Let γ be a constant

> 2. Let µ = p− (1−p) and µ̃ = µ/γ. Finally let s = µ̃t for some t (which will be the

number of accelerated steps). Then, with high probability, the walk will have passed

s after t steps:

Lemma 3.9.8. Let Xt be the position of the walk at accelerated step t, where X0 = nδ.

Then

P(Xt ≤ s) ≤ exp(−µ2t(1 − 1/γ)2/2).

Proof. Let X ′
t = Xt − nδ. Then from Lemma 3.9.2,

P(X ′
t ≤ µt− η) ≤ exp

(

−η
2

2t

)

.

Now let η = µt− s and use

P(Xt ≤ s) = P(X ′
t ≤ s− nδ)

≤ P(X ′
t ≤ s)

to complete the proof.

93



We now prove a bound on the waiting time:

Lemma 3.9.9. Let W (2) be the waiting time in phase 2. Then, assuming the walk

does not go back beyond nδ/2,

P

(

W (2) ≥ 15n ln s

µ

)

≤ (4/s)3/2µ +
2exp

(

−µnδ

4

)

1 − exp
(−µ

2

) . (3.9.3)

Proof. Let Wk ∼ Geo
(

2Xk
5n

)

where Xk is the position of the walk at accelerated step

k (X0 = nδ). We want to bound (w.h.p.) the waiting time W (2) =
∑t

k=1Wk of t

steps of the accelerated walk.

Define the event H to be

H =







⋂

x≥nδ/2

[ ∞
∑

k=1

I(Xk ≤ x) ≤ x/µ̃

]







. (3.9.4)

If H occurs, no sites have been hit too often and the walk has not gone back further

than nδ/2. It is important that we also use the restriction that Xk ≥ nδ/2 because

the waiting time grows the longer the walk moves back. However, it is very unlikely

that the walk will go backwards (even to nδ/2).

We now define some more notation to bound the waiting time. Let X =

(X1,X2, . . . ,Xt) be a tuple of positions and let Nx(X) be the number of times

that x appears in X and let N(X) = (N1(X), N2(X), . . . , Nn(X)). Then we have
∑

xNx(X) = t.

As we said above, the waiting time at x = a stochastically dominates the waiting

time at x = b for b ≥ a. In other words,

Wk D Wk′ if Xk ≤ Xk′ (3.9.5)

where X D Y means that X stochastically dominates Y . Now write the waiting time
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for all steps

W (2)(X) =
t
∑

k=1

Wk

=
∑

x

Nx(X)
∑

h=1

Wh(x) (3.9.6)

where Wh(x) ∼ Geo
(

2x
5n

)

.

If event H occurs, we can put some bounds on Nx. We find that, for all x ≥ nδ/2,

x
∑

y=nδ/2

Ny(X) ≤ x/µ̃ (3.9.7)

and Nx(X) = 0 for x < nδ/2. Now let Xm be such that Nnδ/2(Xm) = nδ

2µ̃ and

Nx(Xm) = 1/µ̃ for x > nδ/2. Then

x
∑

y=nδ/2

Ny(Xm) = x/µ̃. (3.9.8)

Now we introduce the relation �:

Definition 3.9.10. Let x and y be n-tuples. Then x � y if

k
∑

i=1

xi ≤
k
∑

i=1

yi (3.9.9)

for all 1 ≤ k ≤ n with equality for k = n.

Note that this is like majorisation, except the elements of the tuples are not sorted.

Using this, we find that N(X) � N(Xm) (Using
∑

y Ny(X) =
∑

yNy(X
′) = t for all

X,X′.)

If we combine Equations 3.9.5 and 3.9.6 we find that W (2)(X) D W (2)(X′) if

N(X) � N(X′). Roughly speaking, this is simply saying that the waiting time is

larger if the earlier sites are hit more often. But since for all X that satisfy H,

X � Xm, we have W (2)(X) E W (2)(Xm) provided H occurs. We will simplify further
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by noting that Xm � X0 where Nx(X0) = 1/µ̃ for 1 ≤ x ≤ µ̃t = s and zero elsewhere.

Therefore

P

(

W (2)(X) ≥ 5Cn ln s

2µ̃

∣

∣

∣

∣

H

)

≤ P

(

W (2)(X0) ≥ 5Cn ln s

2µ̃

)

.

We can bound this by applying Lemma 3.9.5. Let Wh =
∑s

x=1Wh(x). From Lemma

3.9.5,

P(Wh ≥ Ct′) ≤ 2s
1−C

2 (3.9.10)

where t′ = 5n ln s
2 . However, we want a bound on P

(

∑1/µ̃
h=1Wh ≥ Ct′/µ̃

)

. The same

reasoning as in Lemma 3.9.5 bounds this as

P





1/µ̃
∑

h=1

Wh ≥ Ct′/µ̃



 ≤
(

2s
1−C

2

)1/µ̃
. (3.9.11)

Therefore

P

(

W (2)(X0) ≥ 5Cn ln s

2µ̃

)

≤ 21/µ̃s
(1−C)/2

µ̃ . (3.9.12)

To complete the proof, we just need to find P(Hc). We can bound it using the

union bound and Lemma 3.9.3:
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P(Hc) = P





n
⋃

x=nδ/2

[ ∞
∑

k=1

I(Xk ≤ x) > x/µ̃

]





≤
n
∑

x=nδ/2

P

( ∞
∑

k=1

I(Xk ≤ x) ≥ x/µ̃

)

≤
n
∑

x=nδ/2

2 exp

(−µx(γ − 2)

2

)

≤
∞
∑

x=nδ/2

2 exp

(−µx(γ − 2)

2

)

=
2exp

(

−µnδ(γ−2)
4

)

1 − exp
(

−µ(γ−2)
2

)

Now, for any events A and B

P(A) = P(A ∩B) + P(A ∩Bc)

= P(A|B)P(B) + P(A ∩Bc)

≤ P(A|B) + P(Bc)

and set C = 2 and γ = 3 to obtain the result.

We now combine these two lemmas to prove that phase 2 completes successfully

with high probability:

Proof of Lemma 3.6.10. Phase 2 can fail if:

• The walk does not reach θn. The probability of this is bounded by Lemma 3.9.8:

P(Xt ≤ θn) ≤ exp

(

−2

3
µθn

)

.

This follows from setting t = 3θn
µ and γ = 3.
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• The waiting time is too long. This probability is bounded by Lemma 3.9.9:

P

(

W (2) ≥ 15n ln(θn)

µ

)

≤
(

4

θn

)
3
2µ

+
2exp

(

−µnδ

4

)

1 − exp(−µ/2) + (q/p)n
δ/2.

• The walk gets back to nδ/2. This is bounded by Lemma 3.9.4:

P

(

Walk gets to nδ/2
)

≤ (q/p)n
δ/2 .

So, using the union bound we can bound the overall probability of failure:

P(Phase 2 fails) ≤ exp

(

−2

3
µθn

)

+

(

4

θn

)
3
2µ

+
2exp

(

−µnδ

4

)

1 − exp(−µ/2) + (q/p)n
δ/2 .

Phase 3

This phase starts at θn. We show that this mixes quickly using log-Sobolev arguments.

Lemma 3.9.11. The zero chain on the restricted state space x ∈ [m,n] where m = θn

for θ > 0 has mixing time O
(

n log n
ǫ

)

.

Proof. We restrict the Markov chain to only run from m by adjusting the holding

probability at m, P (m,m). Construct the chain P ′ with transition matrix

P ′(x, y) =



























0 x < m or y < m

1 − P (m,m+ 1) x = y = m

P (x, y) otherwise

(3.9.13)

where P is the transition matrix of the full zero chain. This chain then has stationary

distribution

π′(x) =











π(x)/(1 − w) m ≤ x ≤ n

0 otherwise

(3.9.14)

where w =
∑m−1

x=1 π(x). To see this, first note that the distribution is normalised. We
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want to show that
n
∑

x=m

P ′(x, y)π′(x) = π′(y). (3.9.15)

When y = m we are required to prove that P ′(m,m)π′(m) + P ′(m + 1,m)π′(m +

1) = π′(m). This follows from the reversibility of the unrestricted zero chain, using

P ′(m,m) = 1−P (m,m+ 1). For y > m, Eqn. 3.9.15 is satisfied simply because π(x)

is the stationary distribution of P and related by a constant factor to π′(x).

We can now prove this final mixing time result, making use of Lemma 3.5.12. Let

Qi be the chain that uniformly mixes site i. This converges in one step and has a

log-Sobolev constant independent of n; call it ρ1. Let Q be the chain that chooses

a site at random and then uniformly mixes that site. This is the product chain of

the Qi so, by Lemma 3.5.12, has gap 1/n and Sobolev constant ρQ = ρ1/n. We can

construct the zero chain for this and find its Sobolev constant.

The Sobolev constant is defined (Definition 3.5.10) in terms of a minimisation over

functions on the state space. For the chain Q we can write

ρQ = inf
φ
f(φ).

If we restrict the infimum to be over functions φ with φ(x) = φ(y) for x and y

containing the same number of zeroes then we obtain the Sobolev constant for the

zero-Q chain, ρQ0, which is the chain which counts the number of zeroes in the full

chain Q. Since taking the infimum over less functions cannot give a smaller value,

ρQ0 ≥ ρQ ≥ ρ1/n.

We can now compare this chain to the zero-P chain. The stationary distributions are
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the same. The transition matrix for the zero-Q chain is

Q0(x, y) =











































n+2x
4n y = x

x
4n y = x− 1

3(n−x)
4n y = x+ 1

0 otherwise

Then construct Q′
0 by restricting the space to only run from m in exactly the same

way as P ′ is constructed from P . Q′
0 has the same stationary distribution as P ′. Now

we can perform the comparison. From Eqn. 3.5.14:

A = max
a≥m

Q′
0(a, a+ 1)

P ′(a, a + 1)

= max
a≥m

5(n− 1)

8a
≤ 5

8θ
.

Therefore ρP ′ ≥ 8θρ1
5n . Exactly the same argument applies to show the gap is Ω(1/n)

so the mixing time is (from Eqn. 3.5.20) O(n log n
ǫ ).

Now we can prove that phase 3 completes successfully with high probability:

Proof of Lemma 3.6.11. In Lemma 3.9.11, we show that after O
(

n log n
ǫ

)

steps the

chain mixes to distance ǫ. We just need to show that the walk goes back to θn/2 with

small probability. This follows from Lemma 3.9.4.

3.9.2 Moment Generating Function Calculations

The following lemma is needed in the moment generating function calculations.

Lemma 3.9.12. For Integer s > 0,

Γ(s+ 1)Γ(1/2)

Γ(s+ 1/2)
≤ 2

√
s (3.9.16)
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Proof. From expanding the Γ functions, Eqn. 3.9.16 becomes

s!2s

(2s− 1)!!
=

2 × 4 × 6 × . . .× 2(s − 1) × 2s

1 × 3 × 5 × . . .× (2s − 3) × (2s− 1)

=

s
∏

x=1

2x

2x− 1

We then proceed by induction.
∏1
x=1

2x
2x−1 = 2 and by the inductive hypothesis

s+1
∏

x=1

2x

2x− 1
≤ 2(s + 1)

2(s + 1) − 1
2
√
s.

It is easy to show that 2(s+1)
2(s+1)−1 ≤

√

s+1
s and the result follows.

3.9.3 Mixing Times

We find bounds for the mixing time above that are valid with high probability. Below

we turn these into full mixing time bounds.

Lemma 3.9.13. If after O(n log n) steps the state v of a random walk satisfies

||v − π|| ≤ δ

where π is the stationary distribution and δ is 1/poly(n) then the number of steps

required to be at most a distance ǫ from stationarity is

O
(

n log
n

ǫ

)

.

Proof. Let s be the slowest mixing initial state. Then, after t = O(n log n) steps we

have at worst the state

(1 − δ)π + δs

and if we repeat kt times δ becomes δk. So to get a distance ǫ, k =
⌈

log ǫ
log δ

⌉

.
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Now we evaluate the mixing time:

kt = O(n log n)

⌈

log ǫ

log δ

⌉

= O(n log n)

⌈

log 1/ǫ

log 1/δ

⌉

= O(nmax(log n, log 1/ǫ))

= O
(

n log
n

ǫ

)

.
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Chapter 4

Quantum Tensor Product

Expanders and an Efficient

Unitary Design Construction

4.1 Introduction

In this chapter, we give an efficient construction of a unitary k-design on n qubits for

any k up to O(n/ log(n)). We will do this by first finding an efficient construction

of a quantum k-copy tensor product expander (k-TPE), which can then be iterated

to produce a k-design. We will therefore need to understand some of the theory of

expanders before presenting our construction.

Classical expander graphs have the property that a marker executing a random

walk on the graph will have a distribution close to the stationary distribution after

a small number of steps. We consider a generalisation of this, known as a k-tensor

product expander (TPE) and due to [HH09], to graphs that randomise k different

markers carrying out correlated random walks on the same graph. This is a stronger

requirement than for a normal (k = 1) expander because the correlations between

walkers (unless they start at the same position) must be broken. We then generalise
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quantum expanders in the same way, so that the unitaries act on k copies of the

system. We give an efficient construction of a quantum k-TPE which uses an efficient

classical k-TPE as its main ingredient. We then give as a key application the first

efficient construction of a unitary k-design for any k.

While randomised constructions yield k-designs (by a modification of Theorem 5

of [ABW09]) and k-TPEs (when the dimension is polynomially larger than k [HH09])

with near-optimal parameters, these approaches are not efficient. Previous efficient

constructions of k-designs were known only for k = 1, 2, and no efficient constant-

degree, constant-gap quantum k-TPEs were previously known, except for the k = 1

case corresponding to quantum expanders [BT07, AS04, Har08, GE08].

In Section 4.1.1, we will define quantum expanders and other key terms. Then in

Section 4.1.2 we will describe our main result which will be proved in Section 4.2. In

this chapter, we will use N to denote the dimension rather than d to be consistent

with the rest of the quantum expander literature.

This chapter has been published previously as [HL09a] and is joint work with

Aram Harrow.

4.1.1 Quantum Expanders

We will only consider D-regular expander graphs here. We can think of a random

walk on such a graph as selecting one of D permutations of the vertices randomly at

each step. We construct the permutations as follows. Label the vertices from 1 to

N . Then label each edge from 1 to D so that each edge label appears exactly once

on the incoming and outgoing edges of each vertex. This gives a set of D permu-

tations. Choosing one of these permutations at random (for some fixed probability

distribution) then defines a random walk on the graph.

We now define a classical k-TPE:

Definition 4.1.1 ([HH09]). Let ν be a probability distribution on SN with support on
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≤ D permutations. Then ν is a classical (N,D, λ, k)-TPE if

∥

∥

∥
Eπ∼ν

[

B(π)⊗k
]

− Eπ∼SN

[

B(π)⊗k
]∥

∥

∥

∞
=

∥

∥

∥

∥

∥

∥

∑

π∈SN

(

ν(π) − 1

N !

)

B(π)⊗k

∥

∥

∥

∥

∥

∥

∞

≤ λ.

(4.1.1)

with λ < 1. Here Eπ∼ν means the expectation over π drawn according to ν and Eπ∼SN

means the expectation over π drawn uniformly from SN .

Setting k = 1 recovers the usual spectral definition of an expander. Note that a

(N,D, λ, k)-TPE is also a (N,D, λ, k′)-TPE for any k′ ≤ k. The largest meaningful

value of k is k = N , corresponding to the case when ν describes a Cayley graph

expander on SN .

The degree of the map is D = | supp ν| and the gap is 1 − λ. Ideally, the degree

should be small and gap large. To be useful, these should normally be independent

of N and possibly k. We say that a TPE construction is efficient if it can be im-

plemented in poly(logN) steps. There are known constructions of efficient classical

TPEs. The construction of Hoory and Brodsky [BH08] provides an expander with

D = poly(logN) and λ = 1 − 1/poly(k, logN) with efficient running time. An effi-

cient TPE construction is also known, due to Kassabov [Kas05], which has constant

degree and gap (independent of N and k).

Similarly, we define a quantum k-TPE:

Definition 4.1.2 ([HH09]). Let ν be a distribution on U(N), the group of N × N

unitary matrices, with D = | supp ν|. Then ν is a quantum (N,D, λ, k)-TPE if

∥

∥

∥EU∼ν
[

U⊗k,k
]

− EU∼U(N)

[

U⊗k,k
]∥

∥

∥

∞
≤ λ (4.1.2)

with λ < 1. Here EU∼U(N) means the expectation over U drawn from the Haar mea-

sure.

Again, normally we want D and λ to be constants and setting k = 1 recovers the

usual definition of a quantum expander. Note that an equivalent statement of the

105



above definition is that, for all ρ,

∥

∥

∥
EU∼ν

[

U⊗kρ(U †)⊗k
]

− EU∼U(N)

[

U⊗kρ(U †)⊗k
]∥

∥

∥

2
≤ λ ‖ρ‖2 (4.1.3)

A natural application of this is to make an efficient unitary k-design. The definition

we use here is the same as for a k-TPE, except with closeness in the 1-norm rather

than the ∞-norm. This is given in Definition 2.2.12 (TRACE).

We can make an ǫ-approximate unitary k-design from a quantum k-TPE with

O(k logN) overhead:

Theorem 4.1.3. If U is a quantum (N,D, λ, k)-TPE then iterating the map m =

1
log 1/λ log N2k

ǫ times gives an ǫ-approximate unitary k-design according to Definition

2.2.12 (TRACE) with Dm unitaries.

Proof. Iterating the TPE m times gives

∥

∥

∥
EU∼ν [U⊗k,k] − EU∼U(N)[U

⊗k,k]
∥

∥

∥

∞
≤ λm

This implies that

∥

∥

∥
EU∼ν [U⊗k,k] − EU∼U(N)[U

⊗k,k]
∥

∥

∥

1
≤ N2kλm

We take m such that N2kλm = ǫ to give the result.

Corollary 4.1.4. A construction of an efficient quantum (N,D, λ, k)-TPE yields an

efficient approximate unitary k-design, provided λ = 1 − 1/poly(logN). Further, if

D and λ are constants, the number of unitaries in the design is N (O(k)).

Our approach to construct an efficient quantum k-TPE will be to take an efficient

classical 2k-TPE and mix it with a quantum Fourier transform. The degree is thus

only larger than the degree of the classical expander by one. Since the quantum Fourier

transform on C
N requires poly(logN) time, it follows that if the classical expander

is efficient then the quantum expander is as well. The main technical difficulty is to
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show for suitable values of k that the gap of the quantum TPE is not too much worse

than the gap of the classical TPE.

A similar approach to ours was first used in [HH09] to construct a quantum ex-

pander (i.e. a 1-TPE) by mixing a classical 2-TPE with a phase. However, regardless

of the set of phases chosen, this approach will not yield quantum k-TPEs from classical

2k-TPEs for any k ≥ 2.

4.1.2 Main Result

Let ω = e2πi/N and define the N -dimensional Fourier transform to be

F =
1√
N

N
∑

m=1

N
∑

n=1

ωmn|m〉〈n|. (4.1.4)

Define δF to be the distribution on U(N) consisting of a point mass on F . Our main

result in this chapter is that mixing δF with a classical 2k-TPE yields a quantum

k-TPE for appropriately chosen k and N .

Theorem 4.1.5. Let νC be a classical (N,D, 1 − ǫC , 2k)-TPE, and for 0 < p < 1,

define νQ = pνC + (1 − p)δF . Suppose that

ǫA := 1 − 2(2k)4k/
√
N > 0. (4.1.5)

Then νQ is a quantum (N,D + 1, 1 − ǫQ, k)-TPE where

ǫQ ≥ ǫA
12

min(pǫC , 1 − p) > 0 (4.1.6)

The bound in Eqn. 4.1.6 is optimised when p = 1/(1 + ǫC), in which case we have

ǫQ ≥ ǫAǫC
24

. (4.1.7)

This means that any constant-degree, constant-gap classical 2k-TPE gives a quan-

tum k-TPE with constant degree and gap. If the the classical TPE is efficient then
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the quantum TPE is as well. Using Corollary 4.1.4, we obtain approximate unitary

k-designs with polynomial-size circuits.

Unfortunately the construction does not work for all dimensions; we require that

N = Ω((2k)8k), so that ǫA is lower-bounded by a positive constant. However, in

applications normally k is fixed. An interesting open problem is to find a construction

that works for all dimensions, in particular a k = ∞ expander. (Most work on k = ∞
TPEs so far has focused on the N = 2 case [BG06].) We suspect our construction

may work for k as large as cN for a small constant c. On the other hand, if 2k > N

then the gap in our construction drops to zero.

4.2 Proof of Theorem 4.1.5

4.2.1 Proof overview

First, we introduce some notation. Define E2k
SN

= Eπ∼SN
[B(π)⊗2k] and EkU(N) =

EU∼U(N)[U
⊗k,k]. These are both projectors onto spaces which we label VSN

and

VU(N) respectively. Since VU(N) ⊂ VSN
, it follows that E2k

SN
− EkU(N) is a projector

onto the space V0 := VSN
∩ V ⊥

U(N). We also define E2k
νC

= Eπ∼νC
[B(π)⊗2k] and EkνQ

=

EU∼νQ
[U⊗k,k].

The idea of our proof is to consider E2k
νC

a proxy for E2k
SN

; if λC is small enough

then this is a reasonable approximation. Then we can restrict our attention to vectors

in V0, which we would like to show all shrink substantially under the action of our

expander. This in turn can be reduced to showing that F⊗k,k maps any vector in V0

to a vector that has Ω(1) amplitude in V ⊥
SN

. This last step is the most technically

involved step of the chapter, and involves careful examination of the different vectors

making up VSN
.

Thus, our proof reduces to two key Lemmas. The first allows us to substitute E2k
νC

for E2k
SN

while keeping the gap constant.

Lemma 4.2.1 ([HH09] Lemma 1). Let Π be a projector and let X and Y be operators

such that ‖X‖∞ ≤ 1, ‖Y ‖∞ ≤ 1, ΠX = XΠ = Π, ‖(I −Π)X(I −Π)‖∞ ≤ 1− ǫC and
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‖ΠY Π‖∞ ≤ 1 − ǫA. Assume 0 < ǫC , ǫA < 1. Then for any 0 < p < 1, ‖pX + (1 −
p)Y ‖∞ < 1. Specifically,

‖pX + (1 − p)Y ‖∞ ≤ 1 − ǫA
12

min(pǫC , 1 − p). (4.2.1)

We will restrict to V ⊥
U(N), or equivalently, subtract the projector EkU(N) from each

operator. Thus we have X = E2k
νC

− EkU(N), Π = E2k
SN

− EkU(N) and Y = F⊗k,k − EkU(N).

According to Definition 4.1.1, we have the bound

‖(I − Π)X(I − Π)‖∞ = ‖E2k
νC

− E2k
SN

‖∞ ≤ 1 − ǫC . (4.2.2)

It will remain only to bound λA := 1−ǫA =
∣

∣

∣

∣

∣

∣

(

E2k
SN

− EkU(N)

)

F⊗k,k
(

E2k
SN

− EkU(N)

)∣

∣

∣

∣

∣

∣

∞
.

Lemma 4.2.2. For N ≥ (2k)2,

λA =
∣

∣

∣

∣

∣

∣

(

E2k
SN

− EkU(N)

)

F⊗k,k
(

E2k
SN

− EkU(N)

)∣

∣

∣

∣

∣

∣

∞
≤ 2(2k)4k/

√
N. (4.2.3)

Combining Eqn. 4.2.2, Lemma 4.2.2 and Lemma 4.2.1 now completes the proof of

Theorem 4.1.5.

4.2.2 Action of a Classical 2k-TPE

We start by analysing the action of a classical 2k-TPE. (We consider 2k-TPEs rather

than general k-TPEs since our quantum expander construction only uses these.) The

fixed points are states which are unchanged when acted on by 2k copies of any per-

mutation matrix. Since the same permutation is applied to all copies, any equal

indices will remain equal and any unequal indices will remain unequal. This allows

us to identify the fixed points of the classical expander: they are the sums over all

states with the same equality and difference constraints. For example, for k = 1 (cor-

responding to a 2-TPE), the fixed points are
∑

n1
|n1, n1〉 and

∑

n1 6=n2
|n1, n2〉 (all

off-diagonal entries equal to 1). In general, there is a fixed point for each partition of

the set {1, 2, . . . , 2k} into at most N non-empty parts. If N ≥ 2k, which is the only
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case we consider, the 2kth Bell number β2k gives the number of such partitions (see

e.g. [Sta86]).

We now write down some more notation to further analyse this. If Π is a partition

of {1, . . . , 2k}, then we write Π ⊢ 2k. We will see that E2k
SN

projects onto a space

spanned by vectors labelled by partitions. For a partition Π, say that (i, j) ∈ Π if

and only if elements i and j are in the same block. Now we can write down the fixed

points of the classical expander. Let

IΠ = {(n1, . . . , n2k) : ni = nj iff (i, j) ∈ Π}. (4.2.4)

This is a set of tuples where indices in the same block of Π are equal and indices in

different blocks are not equal. The corresponding state is

|IΠ〉 =
1

√

|IΠ|
∑

n∈IΠ
|n〉 (4.2.5)

where n = (n1, . . . , n2k). Note that the {IΠ}Π⊢2k form a partition {1, . . . , N}2k and

thus the {|IΠ〉}Π⊢2k form an orthonormal basis for VSN
. This is because, when apply-

ing the same permutation to all indices, indices that are the same remain the same

and indices that differ remain different. This implies that

E2k
SN

=
∑

Π⊢2k

|IΠ〉〈IΠ|. (4.2.6)

To evaluate the normalisation, use |IΠ| = (N)|Π| where (N)n is the falling factorial

N(N − 1) . . . (N − n+ 1) and |Π| is the number of blocks in Π. We will later find it

useful to bound (N)n with

(

1 − n2

2N

)

Nn ≤ (N)n ≤ Nn. (4.2.7)

We will also make use of the refinement partial order:

Definition 4.2.3. The refinement partial order ≤ on partitions Π,Π′ ∈ Par(2k,N)
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is given by

Π ≤ Π′ iff (i, j) ∈ Π ⇒ (i, j) ∈ Π′. (4.2.8)

For example, {{1, 2}, {3}, {4}} ≤ {{1, 2, 4}, {3}}. Note that Π ≤ Π′ implies that

|Π| ≥ |Π′|.

Turning Inequality Constraints into Equality Constraints.

In the analysis, it will be easier to consider just equality constraints rather than both

inequality and equality constraints as in IΠ. Therefore we make analogous definitions:

EΠ = {(n1, . . . , n2k) : ni = nj∀(i, j) ∈ Π} (4.2.9)

and

|EΠ〉 =
1

√

|EΠ|
∑

n∈EΠ

|n〉. (4.2.10)

Then |EΠ| = N |Π|. For EΠ, indices in the same block are equal, as with IΠ, but

indices in different blocks need not be different.

We will need relationships between IΠ and EΠ. First, observe that EΠ can be

written as the union of some IΠ sets:

EΠ =
⋃

Π′≥Π

IΠ′ . (4.2.11)

To see this, note that for n ∈ EΠ, we have ni = nj∀(i, j) ∈ Π, but we may also have

an arbitrary number of additional equalities between ni’s in different blocks. The

(unique) partition Π′ corresponding to these equalities has the property that Π is a

refinement of Π′; that is, Π′ ≥ Π. Thus for any n ∈ EΠ there exists a unique Π′ ≥ Π

such that n ∈ IΠ′ . Conversely, whenever Π′ ≥ Π, we also have IΠ′ ⊆ EΠ′ ⊆ EΠ

because each inclusion is achieved only be relaxing constraints.
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Using Eqn. 4.2.11, we can obtain a useful identity involving sums over partitions:

N |Π| = |EΠ| =
∑

Π′≥Π

|IΠ′ | =
∑

Π′≥Π

N(|Π′|). (4.2.12)

Additionally, since both sides in Eqn. 4.2.12 are degree |Π| polynomials and are equal

on ≥ |Π| + 1 points (we can choose any N in Eqn. 4.2.12 with N ≥ 2k), it implies

that x|Π| =
∑

Π′≥Π x(Π′) as an identity on formal polynomials in x.

The analogue of Eqn. 4.2.11 for the states |EΠ〉 and |IΠ〉 is similar but has to

account for normalisation factors. Thus we have

√

|EΠ||EΠ〉 =
∑

Π′≥Π

√

|IΠ′ ||IΠ′〉. (4.2.13)

We would also like to invert this relation, and write |IΠ〉 as a sum over various

|EΠ′〉. Doing so will require introducing some more notation. Define ζ(Π,Π′) to be

1 if Π ≤ Π′ and 0 if Π 6≤ Π′. This can be thought of as a matrix that, with respect

to the refinement ordering, has ones on the diagonal and is upper-triangular. Thus it

is also invertible. Define µ(Π,Π′) to be the matrix inverse of ζ, meaning that for all

Π1,Π2, we have

∑

Π′⊢2k

ζ(Π1,Π
′)µ(Π′,Π2) =

∑

Π′⊢2k

µ(Π1,Π
′)ζ(Π′,Π2) = δΠ1,Π2,

where δΠ1,Π2 = 1 if Π1 = Π2 and = 0 otherwise. Thus, if we rewrite Eqn. 4.2.13 as

√

|EΠ||EΠ〉 =
∑

Π′⊢2k

ζ(Π,Π′)
√

|IΠ′ ||IΠ′〉, (4.2.14)

then we can use µ to express |IΠ〉 in terms of the |EΠ〉 as

√

|IΠ||IΠ〉 =
∑

Π′⊢2k

µ(Π,Π′)
√

|EΠ′ ||EΠ′〉. (4.2.15)

This approach is a generalisation of inclusion-exclusion known as Möbius inversion,
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and the function µ is called the Möbius function (see Chapter 3 of [Sta86] for more

background). For the case of the refinement partial order, the Möbius function is

known:

Lemma 4.2.4 ([Rot64], Section 7).

µ(Π,Π′) = (−1)|Π|−|Π′|
|Π′|
∏

i=1

(bi − 1)!

where bi is the number of blocks of Π in the ith block of Π′.

We can use this to evaluate sums involving the Möbius function for the refinement

order.

Lemma 4.2.5.
∑

Π′≥Π

|µ(Π,Π′)|x|Π′| = x(|Π|) (4.2.16)

where x is arbitrary and x(n) is the rising factorial x(x+ 1) · · · (x+ n− 1).

Proof. Start with |µ(Π,Π′)| = (−1)|Π|−|Π′|µ(Π,Π′) to obtain

∑

Π′≥Π

|µ(Π,Π′)|x|Π′| = (−1)|Π| ∑

Π′≥Π

µ(Π,Π′)(−x)|Π′|

= (−1)|Π| ∑

Π′≥Π

µ(Π,Π′)
∑

Π′′≥Π′

ζ(Π′,Π′′)(−x)(|Π′′|)

using Eqn. 4.2.12. Then use Möbius inversion and (−x)(n) = (−1)nx(n) to prove the

result.

We will mostly be interested in the special case x = 1:

Corollary 4.2.6.
∑

Π′≥Π

|µ(Π,Π′)| = |Π|! (4.2.17)

Using |µ(Π,Π′)| ≥ 1 and the fact that Π ≥ {{1}, . . . , {n}} for all Π ⊢ n, we obtain

a bound on the total number of partitions:
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Corollary 4.2.7. The Bell numbers βn satisfy βn ≤ n!.

4.2.3 Fixed Points of a Quantum Expander

We now turn to VU(N), the space fixed by the quantum expander. As in Chapter 2,

the only operators on (CN )⊗k to commute with U⊗k for all U are linear combinations

of subsystem permutations. The equivalent statement for VU(N) is that the only states

invariant under all U⊗k,k are of the form

1√
Nk

∑

n1,...,nk∈[N ]

|n1, . . . , nk, nπ(1), . . . , nπ(k)〉, (4.2.18)

for some permutation π ∈ Sk. Since EkU(N) = E[U⊗k,k] projects onto the set of states

that is invariant under all U⊗k,k, it follows that VU(N) is equal to the span of the

states in Eqn. 4.2.18.

Now we relate these states to our previous notation.

Definition 4.2.8. For π ∈ Sk, define the partition corresponding to π by

P (π) = {{1, k + π(1)}, {2, k + π(2)}, . . . , {k, k + π(k)}} .

Then the state in Eqn. 4.2.18 is simply |EP (π)〉, and so

VU(N) = span{|EP (π)〉 : π ∈ Sk}. (4.2.19)

Note that the classical expander has many more fixed points than just the desired

|EP (π)〉. The main task in constructing a quantum expander from a classical one is

to modify the classical expander to decay the fixed points that should not be fixed by

the quantum expander.
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4.2.4 Fourier Transform in the Matrix Element Basis

Since we make use of the Fourier transform, we will need to know how it acts on a

matrix element. We find

F⊗k,k|m〉 =
1

Nk

∑

n

ωm.n|n〉

where

m.n = m1n1 + . . .+mknk −mk+1nk+1 − . . .−m2kn2k (4.2.20)

We will also find it convenient to estimate the matrix elements 〈EΠ1 |F⊗k,k|EΠ2〉.
The properties we require are proven in the following lemmas.

Lemma 4.2.9. Choose any Π1,Π2 ⊢ 2k. Let m ∈ Π1 and n ∈ Π2. Call the free

indices of m m̃i for 1 ≤ i ≤ |Π1|. Then let m.n =
∑|Π1|

i=1

∑2k
j=1 m̃iAi,jnj where Ai,j is

a |Π1|×2k matrix with entries in {0, 1,−1} which depends on Π1 (but not Π2). Then

〈EΠ1 |F⊗k,k|EΠ2〉 = N−k+ |Π1|−|Π2|
2

∑

n∈EΠ2

I





∑

j

Ai,jnj ≡ 0 mod N ∀ i



 (4.2.21)

where I is the indicator function.

Proof. Simply perform the m sum in

〈EΠ1 |F⊗k,k|EΠ2〉 = N
−

“

k+
|Π1|+|Π2|

2

”

∑

m∈EΠ1

∑

n∈EΠ2

ωm.n (4.2.22)

Lemma 4.2.10. 〈EΠ1 |F⊗k,k|EΠ2〉 is real and positive.

Proof. Since all entries in the sum in Eqn. 4.2.21 are nonnegative and at least one

(n = 0) is strictly positive, Lemma 4.2.9 implies the result.

Lemma 4.2.11. If Π′
1 ≤ Π1 and Π′

2 ≤ Π2 then

√

|EΠ1 | · |EΠ2 |〈EΠ1 |F⊗k,k|EΠ2〉 ≤
√

|EΠ′
1
| · |EΠ′

2
|〈EΠ′

1
|F⊗k,k|EΠ′

2
〉 (4.2.23)
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Proof. We prove first the special case when Π′
1 = Π1, but Π′

2 ≤ Π2 is arbitrary. Recall

that Π′
2 ≤ Π2 implies that EΠ2 ⊆ EΠ′

2
. Now the LHS of Eqn. 4.2.23 equals

N−k ∑

m∈EΠ1
,n∈EΠ2

exp

(

2πi

N
m.n

)

= N |Π1|−k
∑

n∈EΠ2

I





∑

j

Ai,jnj ≡ 0 mod N ∀ i





= N |Π1|−k
∑

n∈EΠ′
2

I (n ∈ EΠ2) I





∑

j

Ai,jnj ≡ 0 mod N ∀ i





≤ N |Π1|−k
∑

n∈EΠ′
2

I





∑

j

Ai,jnj ≡ 0 mod N ∀ i





=
√

|EΠ1 | |EΠ′
2
|〈EΠ1 |F⊗k,k|EΠ′

2
〉,

as desired. To prove Eqn. 4.2.23 we repeat this argument, interchanging the roles of

Π1 and Π2 and use the fact that 〈EΠ1 |F⊗k,k|EΠ2〉 is symmetric in Π1 and Π2.

Lemma 4.2.12.

〈EΠ1 |F⊗k,k|EΠ2〉 ≤ N− 1
2
|2k−(|Π1|+|Π2|)| (4.2.24)

Proof. Here, there are two cases to consider. The simpler case is when |Π1|+|Π2| ≤ 2k.

Here we simply apply the inequality

∑

m∈EΠ1
,n∈EΠ2

exp

(

2πi

N
m.n

)

≤ |EΠ1 | |EΠ2 | = N |Π1|+|Π2|

to Eqn. 4.2.22, and conclude that 〈EΠ1 |F⊗k,k|EΠ2〉 ≤ N
|Π1|+|Π2|

2
−k.

Next, we would like to prove that

〈EΠ1 |F⊗k,k|EΠ2〉 ≤ Nk− |Π1|+|Π2|
2 . (4.2.25)
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Here we use Lemma 4.2.11 with Π′
1 = Π1 and Π′

2 = {{1}, {2}, . . . , {2k}}, the maxi-

mally refined partition. Note that |EΠ′
2
| = N2k and F⊗k,k|EΠ′

2
〉 = |0〉. Thus

〈EΠ1 |F⊗k,k|EΠ2〉 ≤ Nk− |Π2|
2 〈EΠ1 |F⊗k,k|EΠ′

2
〉 = Nk− |Π2|

2 〈EΠ1 |0〉 = Nk− |Π1|+|Π2|
2 ,

establishing Eqn. 4.2.25.

Lemma 4.2.13. If Π1 = Π2 = P (π) then 〈EΠ1 |F⊗k,k|EΠ2〉 = 1. If, for any Π1, Π2

with |Π1| + |Π2| = 2k, either condition isn’t met (i.e. either Π1 6= Π2 or there does

not exist π ∈ Sk such that P (π) = Π1 = Π2) then

〈EΠ1 |F⊗k,k|EΠ2〉 ≤
2k

N
(4.2.26)

for N > k.

Proof. In Lemma 4.2.14, we introduce the Π1 × Π2 matrix Ã with the property that

m.n =

|Π1|
∑

i=1

|Π2|
∑

j=1

m̃iÃi,jñj (4.2.27)

for all m ∈ Π1 and n ∈ Π2 where m̃j and ñj are the free indices of m and n. This is

similar to the matrix A introduced in Lemma 4.2.9 except only the free indices of n

are considered.

For Π1 = Π2 = P (π), Lemma 4.2.14 implies that Ã = 0, or equivalently m.n = 0

for all m,n ∈ P (π). Using |Π1| + |Π2| = 2k, 〈EΠ1 |F⊗k,k|EΠ2〉 = 1.

Otherwise we have (Π1,Π2) 6∈ {(P (π), P (π)) : π ∈ Sk} with |Π1| + |Π2| = 2k. For

all these, Lemma 4.2.14 implies that Ã is nonzero (for N > k, no entries in Ã can

be > N or < −N so Ã ≡ 0 mod N is equivalent to Ã = 0). Fix an i for which the

ith row of Ã is nonzero. We wish to count the number of (ñ1, . . . , ñ|Π2|) such that
∑

j Ãi,jñj ≡ 0 mod N . Assume that each Ãi,j divides N and is nonnegative; if not,

we can replace Ãi,j with GCD(|Ãi,j |, N) by a suitable change of variable for ñj.

Now choose an arbitrary j such that Ãi,j 6= 0. For any values of ñ1, . . . , ñj−1,
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ñj+1, . . . , ñ|Π2|, there are |Ãi,j | ≤ 2k choices of ñj such that
∑

j Ãi,jñj ≡ 0 mod N .

Thus, there are ≤ 2kN |Π2|−1 choices of ñ such that
∑

j Ãi,j ñj ≡ 0 mod N . Substitut-

ing this into Eqn. 4.2.21 (which we can trivially modify to apply for Ã rather than

just A), we find that

〈EΠ1 |F⊗k,k|EΠ2〉 ≤
2k

N
N−k+ |Π1|+|Π2|

2 =
2k

N
,

thus establishing Eqn. 4.2.26.

Lemma 4.2.14. Let Ã be the matrix such that m.n =
∑|Π1|

i=1

∑|Π2|
j=1 m̃iÃi,jñj for all

m ∈ Π1 and n ∈ Π2 where m̃j and ñj are the free indices of m and n. Then Ã = 0

if and only if Π1,Π2 ≥ P (π) for some π ∈ Sk.

Proof. We first consider Π1 = Π2 = P (π) for the “if” direction. Note that for any

m,n ∈ EP (π), we have

m.n =
k
∑

j=1

mjnj −
k
∑

j=1

mπ(j)nπ(j) = 0. (4.2.28)

This implies that Ã = 0. Now, choose any Π1 ≥ P (π) and Π2 ≥ P (π). Then for any

m ∈ Π1 and n ∈ Π2, m,n ∈ P (π). This means Eqn. 4.2.28 holds for this case so

Ã = 0 also.

On the other hand, suppose that Ã = 0. We will argue that this implies the

existence of a permutation π such that Π1,Π2 ≥ P (π), thus establishing the “only if”

direction.

Let Π1,j (resp. Π2,j) denote the jth block of Π1 (resp. Π2). Then

Ãi,j =
∑

i′∈Π1,i

j′∈Π2,j

Λi′,j′ ,
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where Λi′,j′ is defined to be

Λi′,j′ =



























1 if i′ = j′ ∈ {1, . . . , k}

−1 if i′ = j′ ∈ {k + 1, . . . , 2k}

0 if i′ 6= j′

.

If Ã = 0 then for each i, j we have

|Π1,i ∩ Π2,j ∩ {1, . . . , k}| = |Π1,i ∩ Π2,j ∩ {k + 1, . . . , 2k}| . (4.2.29)

Denote the meet of Π1 and Π2, Π1 ∧Π2 to be the greatest lower bound of Π1 and Π2,

or equivalently the unique partition with the fewest blocks that satisfies Π1∧Π2 ≤ Π1

and Π1 ∧ Π2 ≤ Π2. The blocks of Π1 ∧ Π2 are simply all of the nonempty sets

Π1,i ∩ Π2,j, for i = 1, . . . , |Π1| and j = 1, . . . , |Π2|. Thus, Eqn. 4.2.29 implies that

each block of Π1 ∧ Π2 contains an equal number of indices from {1, . . . , k} as it does

from {k + 1, . . . , 2k}. This implies the existence of a permutation π ∈ Sk such that

{i, k+π(i)} is contained in a single block of Π1∧Π2 for each i = 1, . . . , k. Equivalently

Π1 ∧ Π2 ≥ P (π), implying that Π1 ≥ P (π) and Π2 ≥ P (π).

4.2.5 Proof of Lemma 4.2.2

Proof. We would like to show that, for any unit vector |ψ〉 ∈ V0, |〈ψ|F⊗k,k|ψ〉|2 ≤
2(2k)4k/

√
N . Our strategy will be to calculate the matrix elements of F⊗k,k in the

|IΠ〉 and |Eπ〉 bases. While the |IΠ〉 states are orthonormal, we will see that the

〈EΠ1 |F⊗k,k|EΠ2〉 matrix elements are easier to calculate. We then use Möbius func-

tions to express |IΠ〉 in terms of |EΠ〉.
Consider the matrix E2k

SN
F⊗k,kE2k

SN
. It has k! unit eigenvalues, corresponding to

the k!-dimensional space VU(N). Call the k!+1st largest eigenvalue λA. We bound λA
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with

k! + λ2
A ≤ tr

(

E2k
SN

F⊗k,kE2k
SN

)2

=
∑

Π1,Π2⊢2k

∣

∣

∣〈IΠ1 |F⊗k,k|IΠ2〉
∣

∣

∣

2
. (4.2.30)

We divide the terms in Eqn. 4.2.30 into four types.

1. The leading-order contribution comes from the k! terms of the form Π1 = Π2 =

P (π) for π ∈ Sk. We bound them with the trivial upper bound

|〈IΠ1 |F⊗k,k|IΠ2〉|2 ≤ 1 (4.2.31a)

(which turns out to be nearly tight). We will then show that the remaining

terms are all kO(k)/N .

2. If |Π1| + |Π2| < 2k then

∣

∣

∣
〈IΠ1 |F⊗k,k|IΠ2〉

∣

∣

∣

2
=

1

|IΠ1 | · |IΠ2 |N2k

∣

∣

∣

∣

∣

∣

∣

∣

∑

m∈Π1
n∈Π2

e
2πim.n

N

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ |IΠ1 | · |IΠ2 |
N2k

≤ N |Π1|+|Π2|−2k ≤ 1

N
, (4.2.31b)

where in the last line we have used the fact that |IΠ| ≤ |EΠ| = N |Π|.

3. If |Π1| + |Π2| > 2k then we will show that

∣

∣

∣
〈IΠ1 |F⊗k,k|IΠ2〉

∣

∣

∣

2
≤ 4 · (2k!)2

N
(4.2.31c)

4. If |Π1| + |Π2| = 2k but either Π1 6= Π2 or there is no π ∈ Sk satisfying P (π) =
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Π1 = Π2, then we will show that

∣

∣

∣
〈IΠ1 |F⊗k,k|IΠ2〉

∣

∣

∣

2
≤ ((2k)! + 2k)2

N2
≤ 4 · (2k!)2

N
(4.2.31d)

To establish these last two claims, we will find it useful to express |IΠ〉 in terms of

the various |EΠ〉 states.

Lemmas 4.2.12 and 4.2.13 can now be used together with the Möbius function to

bound |〈IΠ1 |F⊗k,k|IΠ2〉|2. First, suppose |Π1| + |Π2| > 2k. Then

∣

∣

∣〈IΠ1 |F⊗k,k|IΠ2〉
∣

∣

∣ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

Π′
1≥Π1

Π′
2≥Π2

√

|EΠ′
1
| |EΠ′

2
|

|IΠ1 | |IΠ2 |
µ(Π1,Π

′
1)µ(Π2,Π

′
2)〈EΠ1 |F⊗k,k|EΠ2〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
∑

Π′
1≥Π1

Π′
2≥Π2

√

|EΠ′
1
| |EΠ′

2
|

|IΠ1 | |IΠ2 |
∣

∣µ(Π1,Π
′
1)µ(Π2,Π

′
2)
∣

∣ 〈EΠ′
1
|F⊗k,k|EΠ′

2
〉

≤ Nk

√

|IΠ1 | |IΠ2 |
∑

Π′
1≥Π1

Π′
2≥Π2

∣

∣µ(Π′
1,Π1)µ(Π′

2,Π2)
∣

∣

by Lemma 4.2.12. Then using by Corollary 4.2.6 we find

∣

∣

∣
〈IΠ1 |F⊗k,k|IΠ2〉

∣

∣

∣
=

Nk|Π1|! |Π2|!
√

(N)|Π1|(N)|Π2|
(4.2.32)

≤ 2 · (2k)!√
N

In the last step, we have assumed that 4k2 < N , so that (N)ℓ ≥ N ℓ/2 for any ℓ ≤ 2k.

We have also made use of the fact that (still assuming 4k2 < N) Eqn. 4.2.32 is

maximised when |Π1| + |Π2| = 2k + 1, and in particular, when one of |Π1|, |Π2| is

equal to 2k and the other is equal to 1.

A similar analysis applies to the pairs Π1,Π2 with |Π1| + |Π2| = 2k, but with
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(Π1,Π2) 6∈ {(P (π), P (π)) : π ∈ Sk}. In this case,

〈IΠ1 |F⊗k,k|IΠ2〉 =

√

|EΠ1 | |EΠ2 |
|IΠ1 | |IΠ2 |

〈EΠ1 |F⊗k,k|EΠ2〉+

∑

Π′
1
≥Π1,Π′

2
≥Π2

(Π′
1,Π′

2) 6=(Π1,Π2)

√

|EΠ′
1
| |EΠ′

2
|

|IΠ1 | |IΠ2 |
µ(Π1,Π

′
1)µ(Π2,Π

′
2)〈EΠ′

1
|F⊗k,k|EΠ′

2
〉

(4.2.33)

We now use Lemmas 4.2.13 and 4.2.12 to bound each of the two terms. For the first

term, we use Eqn. 4.2.26 to upper bound it with 2k/N . For each choice of Π′
1 and

Π′
2 in the second sum, we have |Π′

1| + |Π′
2| ≤ 2k − 1. Thus we can upper bound the

absolute value of the second term in Eqn. 4.2.33 with

1
√

|IΠ1 | |IΠ2 |
∑

Π′
1
≥Π1,Π′

2
≥Π2

(Π′
1

,Π′
2
) 6=(Π1,Π2)

|µ(Π1,Π
′
1)µ(Π2,Π

′
2)|N |Π′

1|+|Π′
2|−k ≤ 2 · |Π1|! · |Π2|!

N

≤ (2k)!

N
.

We combine the two terms and square to establish Eqn. 4.2.31d.

We now put together the components from Eqn. 4.2.31 to upper bound Eqn. 4.2.30,

and find that

k! + λ2
A ≤ k! + β2

2k

4 · (2k!)2
N

,

implying that λA ≤ 2β2k(2k!)/
√
N ≤ 2(2k)4k/

√
N . This concludes the proof of

Lemma 4.2.2.

4.3 Conclusions

We have shown how efficient quantum tensor product expanders can be constructed

from efficient classical tensor product expanders. This immediately yields an efficient

construction of unitary k-designs for any k. Unfortunately our results do not work for

all dimensions; we require the dimension N to be Ω((2k)8k). While tighter analysis of
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our construction could likely improve this, our construction does not work for N < 2k.

Constructions of expanders for all dimensions remains an open problem.
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Chapter 5

Applications of Designs

In this chapter we first survey known applications of designs from a wide variety

of areas. Then we present new results applying designs to derandomise some large

deviation bounds.

5.1 Review of Applications

As we have already discussed, random unitaries and random states have many appli-

cations. For some of these applications a design is sufficient since only the first few

moments of the distribution are required to be equal to those of the Haar measure.

5.1.1 Quantum Cryptography

The first applications we discuss are to quantum cryptography. In classical cryptog-

raphy, the one-time pad is the most basic operation that perfectly encrypts a message

using a key that is the same length as the message. In quantum cryptography the

analogue is a quantum operation E such that for all input states ρ, E(ρ) = ρ0 with the

requirement that given a secret key Bob can decode Alice’s message perfectly. Since

all states are encoded to ρ0 Eve cannot learn anything about the message without

knowing the key. In this section all logs will be taken to base 2.

If ρ0 is the identity, then the map E is a unitary 1-design. Therefore using 2n
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bits of key to label the Pauli operators provides a quantum one-time pad. In fact, in

[AMTd00] it is shown that 2n bits of key are also necessary for a quantum one-time

pad. Therefore this unitary 1-design is of optimal size.

It is interesting to note that 2n bits of key are required rather than just n for the

classical one-time pad. This is related to the fact that quantum states allow super-

dense coding [BW92], which allows two classical bits to be sent per qubit. Although

it is not possible to use a shorter key for exact encryption, it would be desirable to

shorten the key if we can tolerate Eve learning a small amount of information about

the message. In [AS04], they consider closeness in the 1-norm, and set ρ0 = I. They

define a map E as an ǫ-approximate quantum encryption scheme if for all ρ

||E(ρ) − I/d||1 ≤ ǫ. (5.1.1)

Thus we see an ǫ-approximate unitary 1-design according to (for example) Definition

2.2.10 (DIAMOND) suffices. In [AS04], they present an efficient construction that

satisfies Eqn. 5.1.1 with n+ 2 log n+ 2 log
(

1
ǫ

)

+O(1) bits of key. While this does not

immediately provide an ǫ-approximate 1-design according to any of our definitions

with only (1 + o(1))n bits of key, Eqn. 5.1.1 is a valid definition of an ǫ-approximate

unitary 1-design. This key length was further improved by Dickinson and Nayak

[DN06] to n+ 2 log
(

1
ǫ

)

+O(1) and their construction is efficient.

A stronger definition for ǫ-approximate encryption was given in [HLSW04]. They

define a map E to be an ǫ-approximate quantum encryption scheme if for all ρ

||E(ρ) − I/d||∞ ≤ ǫ/d. (5.1.2)

This implies the 1-norm bound in Eqn. 5.1.1 but a dimension factor is lost when

converting the other way. This could be used as yet another approximate 1-design

definition. However, there are no known efficient constructions of such ∞-norm ran-

domising maps. In [HLSW04] they provide an inefficient randomised construction

with key length n + log n + 2 log
(

1
ǫ

)

+ O(1). Their method is to show that with
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non-zero probability random unitaries suffice.

This result was improved by Aubrun in [Aub09] to reduce the key length to n +

2 log
(

1
ǫ

)

+O(1). The method is the same as [HLSW04] except the analysis is tighter.

Aubrun also makes a step towards finding an efficient construction by showing that

the unitaries can be Pauli matrices, which can be implemented efficiently, although

the sampling is still inefficient.

Besides cryptographic applications, it is shown in [HLSW04] that ∞-norm ran-

domising maps can be used to hide correlations from local operations and classical

communication (LOCC) and have applications to data hiding (see later) and locking

of classical correlations [DHL+04], whereby classical correlations can be hidden but

unlocked by a very short key.

The last cryptography example we give is that of non-malleable encryption given

in [ABW09]. Here the authors not only consider hiding information from Eve but

they also require that she cannot change the message. Of course, Eve could always

replace the message with some fixed state or do nothing, so according to [ABW09],

an encryption scheme is non-malleable if these (or a convex combination) are the only

operations Eve can perform on the encoded data. The main result of this paper is

that a unitary 2-design is necessary and sufficient. They then show, as do Gross et

al. [GAE07], that a 2-design requires at least (d2 − 1)2 + 1 unitaries i.e. the key must

be at least 4n− o(1) bits long. Even for approximate encryption (which can be seen

as an approximate 2-design) the key length is essentially the same.

5.1.2 Measurement

In some cases a random measurement is a good choice but cannot be performed

efficiently. One example of such a result is:

Theorem 5.1.1 (Sen, [Sen05]). Let ρ1 and ρ2 be any mixed states with r(ρ1)+r(ρ2) ≤
√
d/C for a sufficiently large constant C. Here, r(ρ) is the rank of the state ρ. Then

EM ||M(ρ1) −M(ρ2)||1 = Ω(||ρ1 − ρ2||2) (5.1.3)
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where M is an orthonormal basis picked from the Haar measure. Here, M(ρ) is the

probability distribution of outcomes according to the POVM M .

Since a large 1-norm distance between probability distributions means the dis-

tributions are easily distinguishable, this result places a lower bound on the distin-

guishability of the states ρ1 and ρ2 in terms of their 2-norm distance.

In [AE07], Ambainis and Emerson show that a POVM made from a state 4-design

achieves the bound in Eqn. 5.1.3. In fact, an ǫ-approximate state 4-design suffices,

provided that ǫ = O(||ρ1 − ρ2||42). To ensure the POVM is suitably normalised, we

insist here that the approximate 4-design is also an exact 1-design rather than an

ǫ-approximate 1-design, which is all that Definition 2.2.9 ensures.

In [IR06], Iblisdir and Roland consider a slightly different measurement problem

for which a random measurement achieves the best outcome. The setting is that Alice

chooses a random pure state (the authors only consider the case that Alice’s system

is 2-dimensional i.e. a single qubit) from the Haar measure and makes k copies of it.

Bob then has to find a state with high overlap with the given state. The POVM that

achieves the optimum is [MP95]

(k + 1)|ψ〉〈ψ|⊗kdψ. (5.1.4)

From Lemma 2.2.2, the average of this is the projector onto the symmetric subspace

of k qubits. While this is not the identity, no other outcomes are possible because

the input state is symmetric. The states in the POVM can be replaced by a state

k-design and in [IR06] the authors present a construction of a state k-design for all

k, although only for one qubit.

5.1.3 Average Gate Fidelity

When implementing a quantum operation, we would like to know how far the actual

operation is from the desired. One way of measuring this is the average gate fidelity
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[Nie02]:

F̄ (E , U) =

∫

dψ〈ψ|U †E(|ψ〉〈ψ|)U |ψ〉 (5.1.5)

where E is the operation implemented and U is the desired unitary. We see imme-

diately, following [DCEL06], that the integrand is a balanced polynomial of degree 2

so the Haar measure on states can be replaced by a state 2-design. We can even use

an approximate design if the average fidelity only needs to be known approximately.

By repeatedly sampling from the design we can obtain an estimate of the average to

1/poly(log d) accuracy efficiently whereas naively sampling random states will not be

efficient.

5.1.4 Data Hiding

Data hiding was introduced by Terhal, DiVincenzo and Leung [TDL01, DLT02] as a

fundamentally quantum concept. The setting is that Alice and Bob share a quantum

state which contains secret bits. However, the state is chosen so that if they can

only communicate using LOCC then they cannot learn this secret bit. To encode one

secret bit, the “hider” constructs one of two orthogonal mixed states ρ
(m)
0 and ρ

(m)
1

and hands half to Alice and the other half to Bob. ρ
(m)
0 is the state with m random

Bell pairs chosen subject to the constraint that the number of singlets is even. ρ
(m)
1

is the same state except with an odd number of singlets. The parameter m controls

the degree of security.

The way that designs help here is in the construction of these states using minimal

resources. The authors show that ρ0 can be obtained from twirling any initial pure

state of the form |ψ〉〈ψ| ⊗ |ψ〉〈ψ|1:

ρ
(m)
0 =

∫

U(2m)
dU(U ⊗ U)|ψ〉〈ψ| ⊗ |ψ〉〈ψ|(U ⊗ U)†. (5.1.6)

ρ
(m)
1 can be created from ρ

(m−1)
0 .

The authors consider replacing the Haar integral with a sum over a unitary 2-

1By unitary invariance of the Haar measure, the choice of |ψ〉 does not affect the resultant state.

128



design. If errors can be tolerated then an approximate 2-design can be used and the

state can be prepared efficiently.

5.1.5 Decoupling and Evolution of Black Holes

For various tasks in quantum Shannon theory, it is desirable to decouple a system from

the environment. In [HHYW07] and [ADHW06], it is shown that for most random

unitaries applied to the system the resulting overall state is close to a product state.

The setting is that there is a system S with two parts S1 and S2. The environment

is E. Let the initial state be ψSE and let

σS2E(U) = trS1

[

(U ⊗ IE)ψSE(U † ⊗ IE)
]

. (5.1.7)

Then we have

Theorem 5.1.2 ([ADHW06], Theorem 4.2).

∫

U(S)
||σS2E(U) − σS2(U) ⊗ σR(U)||21 dU ≤

dSdE
d2
S1

(

tr
[

(ψSE)2
]

+ tr
[

(ψS)2
]

tr
[

(ψE)2
])

(5.1.8)

where σS2(U) = trS1E σSE(U), etc..

The proof uses the 2-norm squared, which is a polynomial of degree 2 in the matrix

elements of the random unitary. Therefore the same result holds when U is selected

from a unitary 2-design instead and, as above, an approximate design can be used to

allow an efficient implementation. This allows the encoding circuits in [ADHW06] to

be made efficient although unfortunately the decoding circuits are still inefficient.

Decoupling has also been used in the study of the evolution of black holes. While

many aspects of quantum gravity are not understood, some attempts have been made

to understand how black holes leak information. Two examples are by Hayden and

Preskill [HP07] and Sekino and Susskind [SS08]. We concentrate on the approach in

[HP07] here. The idea is that Alice wishes to destroy some quantum information by
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throwing it into a black hole. However, Bob has been watching it and storing the

Hawking radiation emitted. The question they ask is how long does Bob have to wait

before he can recover Alice’s information.

Imagine that Alice’s information is maximally entangled with a system N held

by Charlie. Should Bob acquire a state from the emitted radiation that is maximally

entangled with N then we say he has successfully recovered Alice’s information. De-

coupling is used because, if what remains of the black hole after some evaporation is

uncorrelated with N , then the emitted radiation must be maximally entangled with

N and Bob has succeeded. We therefore require that the evolution of the black hole

produces a decoupling unitary. If the evolution is random then, using Theorem 5.1.2,

this will likely happen, provided enough radiation has been emitted. In fact, if Bob

holds a system that is maximally entangled with the black hole’s internal state before

Alice throws in her message, then he can recover her state with fidelity 1 − 2−c by

reading in only the k + c qubits emitted after Alice deposits her information, where

k is the number of qubits in Alice’s message.

This model is not physically realistic because most unitaries cannot be imple-

mented efficiently so the black hole would take far too long to apply the decoupling

unitary. However, as we said above, only a 2-design is required. In fact, in [HP07]

they consider the case that the evolution of a black hole is a local random quantum

circuit. This is similar to the random circuits discussed in Chapter 3 except they

assume that the unitaries are only applied to nearest-neighbour qubits. Should the

random circuit converge to a 2-design quick enough (as Hayden and Preskill conjec-

ture) then the evolution will be sufficiently fast for Bob to find Alice’s state. While

our results do not prove this they could readily be extended to cover the local case

considered here.

5.1.6 Applications for Larger k

So far we have only used k-designs for k ≤ 4. However, the higher k is the more

similar a k-design is to a random unitary. In the next section we consider replacing
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random unitaries with k-designs in large deviation bounds, thus finding applications

for larger k.

5.2 Derandomising Large Deviation Bounds

The remainder of this chapter has been published previously as [Low09a].

There are many results in quantum information theory that show generic proper-

ties of states or unitaries (e.g. [HLW06, HLSW04]). Often, these results say that, with

high probability, a random state or unitary has some property, for example high en-

tropy. However, as we have seen above, neither random unitaries nor random states

can be implemented efficiently. This limits the usefulness of such results since no

physical systems will behave truly randomly. To make such results more physically

relevant, it would be desirable to show that these properties are generic properties of

unitaries from some natural distribution that can be implemented efficiently. Only

then could we conclude that we would expect to see such properties in natural systems.

In many cases, the generic properties of unitaries are desirable but randomised con-

structions given by the large deviation bounds are inefficient. We would like to come

up with distributions which can be implemented efficiently that have similar generic

properties. One example where the best known construction is an inefficient ran-

domised one is the ∞-norm randomising map (see Section 5.1.1). Another example is

locking of classical correlations [DHL+04, HLSW04], which is a quantum phenomenon

whereby a small amount of communication can greatly enhance the classical correla-

tion between two parties. To prove the randomised constructions, the authors show

that, with some non-zero probability, random unitaries have the required property.

However, there are no known efficient constructions of unitaries with these proper-

ties. If, on the other hand, we could show that unitaries drawn randomly from a set

that can be implemented efficiently have the property with non-zero probability, we

could move an important step closer to finding efficient constructions. (It would not

actually provide an efficient construction unless we could find an efficient sampling

method.) In fact, for the case of ∞-norm randomisation, this was done by Aubrun in
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[Aub09].

In this section we continue the theme of replacing the Haar measure with a k-

design. The reason for using k-designs is two-fold. Firstly, because the first k mo-

ments are the same we would expect similar (although weaker) measure concentration

results. Secondly, for k = poly(n) (when the design is on n qubits), we might expect

to be able to implement the k-design efficiently (i.e. in poly(n) time). Indeed, for

k = O(n/ log n), we can use the construction from Chapter 4, provided we allow for

approximate designs. However, in the applications we consider here we can always

make the approximation good enough to make the error negligible.

Not only can k-designs be constructed efficiently, they may even be the product

of generic dynamics. In Chapter 3, we show that random quantum circuits quickly

converge to a 2-design for a quite general model of such circuits. We also conjecture

in Chapter 3 that random circuits give k-designs for k > 2 and k = poly(n) in

polynomial time. If a physical system can be accurately modelled by a random circuit

then, assuming this conjecture, the naturally occurring states will be k-designs rather

than fully random states.

We now summarise some related results in this area. Smith and Leung [SL06]

and Dahlsten and Plenio [DP06] found large deviation bounds for stabiliser states.

They showed that, in certain regimes, stabiliser states are very likely to have large

entanglement. Stabiliser states are state 2-designs so our results can be seen as a

generalisation of this to k-designs for k > 2 and to other problems. There are also

some recent classical results related to the present work. Alon and Nussboim [AN08]

consider replacing full randomness with k-wise independence, a classical analogue of k-

designs, in random graph theory. They show that k-wise independent random graphs

with k = poly(logN) (N is the number of vertices) have similar generic properties to

fully random graphs.

In the remainder of this chapter, unless otherwise stated, we will use the defini-

tion of an ǫ-approximate unitary design given in terms of monomials, as in Definition

2.2.13. Using the tensor product expander construction of Chapter 4 together with

132



Lemma 2.2.14 gives an efficient construction for k = O(log d/ log log d) for this defi-

nition.

5.2.1 Introductory Problem: Entanglement of a 2-design

We now illustrate our main idea by showing a large deviation bound for the entan-

glement of a 2-design, but in a different way to [SL06, DP06].

It has been known for a long time that random states are highly entangled across

any bipartition [Pag93, FK94, San95]. Further, in [HLW06], it is shown that random

unitaries generate almost maximally entangled states with high probability. However,

generating random states is inefficient so it is an interesting question to ask if random

efficiently obtainable states are highly entangled.

Let the system be H = HS ⊗HE, where we label the two systems S and E. Let

the dimensions be dS and dE and d = dSdE . Let the overall initial state be any fixed

pure state ρ0. Then consider applying a random unitary U to SE to get the state

ψ = Uρ0U
†. Then the von Neumann entropy S(ψS) = − trψS logψS of the reduced

state ψS = trE ψ is close to log2 dS (the maximal) with high probability:

Theorem 5.2.1 ([HLW06] Theorem 3.3). Let dE ≥ dS ≥ 3. Then for unitaries

chosen from the Haar measure

P(S(ψS) ≤ log2 dS − α− β) ≤ exp

(

−(d− 1)Cα2

(log2 dS)2

)

(5.2.1)

where C = 1
8π2 and β = 1

ln 2
dS
dE

.

Now, consider choosing the unitary from a 2-design instead. Later on (Lemma

5.4.1), we show that E trψ2
S = dS+dE

d+1 =: µ. Since purity is a polynomial of degree 2,

it does not matter if we take the expectation over the Haar measure or the 2-design.
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We now apply Markov’s inequality:

P
(

trψ2
S ≥ µγ

)

≤ E trψ2
S

µγ

=
1

γ
.

Using the bound S(ψS) ≥ − log2 trψ2
S and some manipulations (the details are in

Section 5.4), this can be written as

P(S(ψS) ≤ log2 dS − α− β) ≤ 2−α (5.2.2)

where β is as in Theorem 5.2.1. This bound is much weaker than the bound in

Theorem 5.2.1 and, in particular, does not show stronger concentration as d increases.

Later in the chapter, we will show that choosing unitaries from a k-design with larger

k will give a much stronger bound that does give sharp concentration results for large

d.

5.2.2 Main Results

We will now state our main results.

Our most general result is:

Theorem 5.2.2. Let f be a polynomial of degree K. Let f(U) =
∑

i αiMi(U) where

Mi(U) are monomials and let α(f) =
∑

i |αi|. Suppose that f has probability concen-

tration

PU∼U(d)(|f − µ| ≥ δ) ≤ Ce−aδ
2

(5.2.3)

and let ν be an ǫ-approximate unitary k-design. Then

PU∼ν(|f − µ| ≥ δ) ≤ 1

δ2m

(

C
(m

a

)m
+

ǫ

dk
(α+ |µ|)2m

)

(5.2.4)

for integer m with 2mK ≤ k.

We therefore take a bound for Haar random unitaries of the form Eqn. 5.2.3 and
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turn it into a bound for k-designs. Often, we will use Levy’s Lemma (Lemma 5.3.2)

to give the initial concentration bound in Eqn. 5.2.3. In this case, a = Θ(d) (provided

the Lipschitz constant (see later) is constant).

We then apply this to entropy, as a generalisation of Section 5.2.1. We go via the

2-norm since the entropy function is not a polynomial. We find

Theorem 5.2.3. Let ν be a 4−n
2
-approximate unitary n

10 log2 n
-design on dimension

2n with n ≥ 19. Let dSdE = 2n and 2 ≤ dS ≤ 2n/10 and α ≥ 2. Then

PU∼ν(S(ψS) ≤ log2 dS − α− β) ≤ 8 exp2

(

− n

80 log2 n

(n

5
+ α

)

)

(5.2.5)

where β = 1
ln 2

dS
dE

and exp2 is the exponential function base 2.

We choose a k-design for k = n
10 log2 n

since this is (up to constants) the largest k

for which we have an efficient unitary k-design construction (using the construction

of Chapter 4).

We then move on to apply our results to ideas in statistical mechanics from

Popescu et al. [PSW06]. In this paper, the authors show that, for almost all pure

states of the universe, any subsystem is very close to the canonical state, which is the

state obtained by assuming a uniform distribution over all allowed states of the uni-

verse (defined in Eqn. 5.5.2). This could be achieved if the dynamics of the universe

produced a random unitary, but this would take exponential time in the size of the

universe. We show that the random unitary can be replaced by a k-design, showing

that the canonical state can be reached in polynomial time:

Theorem 5.2.4. Let ΩS be the canonical state of the system (defined in Eqn. 5.5.2)

and ρS be the state after choosing a unitary from an ǫ-approximate k-design. Let dR

be the dimension of the universe’s Hilbert space subject to the arbitrary constraint R

(normally this will be a total energy constraint). Then for ǫ ≤ 3
2

(

4d3S
dR

)k/8
, k ≤ 4d2S

9π3

PU∼ν(||ρS − ΩS||1 ≥ δ) ≤ 6

(

4d3
S

dRδ2

)k/8

. (5.2.6)
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Finally, we use results from [GFE09] to show that most states in an O(1)-approxi-

mate state n2-design on n qubits are useless for measurement-based quantum comput-

ing, in the sense that any computation using such states could be simulated efficiently

on a classical computer. We do this, following [GFE09], by showing that the states

are so entangled that the measurement outcomes are essentially random.

5.2.3 Optimality of Results

An important question is how close our results are to optimal, in terms of their

scaling with dimension d. In Theorem 5.2.2, we will normally have a = Θ(d) so for m

constant, we obtain polynomial bounds, rather than the exponential bounds for full

randomness. This is to be expected:

Theorem 5.2.5. Let ν be an ǫ-approximate unitary k-design. Suppose also that it

is discrete i.e. contains a finite number S of unitaries. Let f(U) be any function on

matrix elements of U and µ be any constant. Then either f(U) = µ for all U in ν or

for some δ > 0

PU∼ν(|f − µ| ≥ δ) ≥ pmin (5.2.7)

where pmin is the probability of choosing the least probable unitary from ν. If the

probability is uniform, pmin = 1/S.

Proof. There exists at least one U such that |f(U) − µ| ≥ δ for some δ > 0; the

probability of selecting one such U is at least pmin.

Corollary 5.2.6. Our results are polynomially related to the optimal (i.e. the optimal

bounds can be obtained by raising ours to a constant power).

Proof. Our results apply for any design, so must obey the bound in Theorem 5.2.5

for all designs. The unitary design construction we use (from Chapter 4 using Lemma

2.2.14) has pmin = d−O(k) hence the bounds cannot scale better than this.

We can also almost recover the tail bound for full randomness in Theorem 5.2.2.
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Suppose for simplicity that we have an exact design (i.e. ǫ = 0), so that

PU∼ν(|f − µ| ≥ δ) ≤ C
( m

aδ2

)m
.

The optimal m is aδ2/e, which gives

PU∼ν(|f − µ| ≥ δ) ≤ Ce−aδ
2/e.

So our result allows us to interpolate from Markov’s inequality, which gives weak

bounds, all the way to full Haar randomness and is within a polynomial correction of

optimal for the full range.

The remainder of the chapter is organised as follows. In Section 5.3 we present

our main technique for finding large deviation bounds for k-designs. We then apply

this to entropy in Section 5.4, to ideas in statistical mechanics in Section 5.5 and to

using k-designs for measurement-based quantum computing in Section 5.6. We then

conclude in Section 5.7.

5.3 Main Technique

The main idea in this chapter can be summarised in three steps. Let f : U(d) → C

be a balanced polynomial of degree K in the matrix elements of a unitary U . Then

to get a concentration bound on f when U is chosen from a k-design:

1. Find some measure concentration result for |f(U) − µ| when the unitaries are

chosen uniformly at random from the Haar measure. Normally µ will be the

expectation of f .

2. Use this to bound the moments E|f(U) − µ|2m for some integer m ≤ k
2K .

3. Then use Markov’s inequality and the fact that for a (approximate) k-design the

moments are (almost) the same as for uniform randomness. We then optimise

the bound for m, which will often involve setting m close to the maximum,
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⌊

k
2K

⌋

.

We will now work through each of these steps and finish with a proof of Theorem

5.2.2.

5.3.1 Step 1: Concentration for uniform randomness

For the first step, we will often start with Levy’s Lemma. This states, roughly speak-

ing, that slowly varying functions in high dimensions are approximately constant. We

quantify ‘slowly varying’ by the Lipschitz constant:

Definition 5.3.1. The Lipschitz constant η (with respect to the Euclidean norm) for

a function f is

η = sup
U1,U2

|f(U1) − f(U2)|
||U1 − U2||2

. (5.3.1)

Then we have Levy’s lemma:

Lemma 5.3.2 (Levy, see e.g. [Led01]). Let f be an η-Lipschitz function on U(d) with

mean Ef . Then

P(|f − Ef | ≥ δ) ≤ 4 exp

(

−C1dδ
2

η2

)

(5.3.2)

where C1 can be taken to be 2
9π3 .

5.3.2 Step 2: A bound on the moments

Levy’s Lemma says that f is close to its mean. This means that E|f − Ef |m should

be small. We will bound the moments for slightly more general concentration results:

Lemma 5.3.3. Let X be any random variable with probability concentration

P(|X − µ| ≥ δ) ≤ Ce−aδ
2
. (5.3.3)

(Normally µ will be the expectation of X, although the bound does not assume this.)

Then

E|X − µ|m ≤ CΓ(m/2 + 1)a−m/2 ≤ C
(m

2a

)m/2
(5.3.4)
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for any m > 0.

Proof. This proof is based on the proof of an analogous result by Bellare and Rompel

[BR94], Lemma A.1.

Note that, for any random variable Y ≥ 0,

EY =

∫ ∞

0
P(Y ≥ y)dy. (5.3.5)

Therefore

E|X − µ|m =

∫ ∞

0
P(|X − µ|m ≥ x)dx

=

∫ ∞

0
P(|X − µ| ≥ x1/m)dx

≤ C

∫ ∞

0
exp(−ax2/m)dx

where in the last line we used the assumed large deviation bound Eqn. 5.3.3. To

evaluate this integral, use the change of variables y = ax2/m to get

E|X − µ|m ≤ Cm

2
a−m/2

∫ ∞

0
e−yym/2−1dy

= Ca−m/2Γ(m/2 + 1)

≤ C
(m

2a

)m/2
.

5.3.3 Step 3: A concentration bound for a k-design

Now we show how to obtain a measure concentration result for polynomials when the

unitaries are selected from an approximate k-design. We first show that the moments

of |f − µ| for f a polynomial are close to the Haar measure moments:

Lemma 5.3.4. Let f be a balanced polynomial of degree K and µ be any constant.

Let f =
∑t

i=1 αiMi where each Mi is a monomial. Let α(f) =
∑

i |αi|. Then for m
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an integer with 2mK ≤ k and ν an ǫ-approximate k-design,

EU∼ν|f − µ|2m ≤ EU∼U(d)|f − µ|2m +
ǫ

dk
(α+ |µ|)2m . (5.3.6)

Proof. For simplicity, we assume that f and µ are real. Our proof easily generalises

to the complex case.

Firstly we calculate |EU∼νf i − EU∼U(d)f
i| using the multinomial theorem:

|EU∼νf
i−EU∼U(d)f

i|

=

∣

∣

∣

∣

∣

∣

∑

k1+...+kt=i

(

i

k1, . . . , kt

)

αk11 . . . αkt
t

(

EU∼ν − EU∼U(d)

)

Mk1
1 . . .Mkt

t

∣

∣

∣

∣

∣

∣

≤
∑

k1+...+kt=i

(

i

k1, . . . , kt

)

|α1|k1 . . . |αt|kt

∣

∣

∣

(

EU∼ν − EU∼U(d)

)

Mk1
1 . . .Mkt

t

∣

∣

∣

≤ ǫ

dk

∑

k1+...+kt=i

(

i

k1, . . . , kt

)

|α1|k1 . . . |αt|kt

=
ǫ

dk
αi.

We now calculate EU∼ν |f − µ|2m:

∣

∣EU∼ν|f − µ|2m − EU∼U(d)|f − µ|2m
∣

∣ =
∣

∣EU∼ν(f − µ)2m − EU∼U(d)(f − µ)2m
∣

∣

=

∣

∣

∣

∣

∣

2m
∑

i=0

(

2m

i

)

(EU∼νf i − EU∼U(d)f
i)(−µ)2m−i

∣

∣

∣

∣

∣

≤
2m
∑

i=0

(

2m

i

)

|EU∼νf i − EU∼U(d)f
i||µ|2m−i

≤ ǫ

dk

2m
∑

i=0

(

2m

i

)

αi|µ|2m−i

=
ǫ

dk
(α+ |µ|)2m .

Now we can simply apply Markov’s inequality to prove Theorem 5.2.2.
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Proof of Theorem 5.2.2. Apply Markov’s inequality and Lemmas 5.3.3 and 5.3.4:

PU∼ν(|f − µ| ≥ δ) = PU∼ν(|f − µ|2m ≥ δ2m)

≤ EU∼ν|f − µ|2m
δ2m

≤ 1

δ2m

(

C
(m

a

)m
+

ǫ

dk
(α+ |µ|)2m

)

.

We finish this section with two remarks. Firstly, provided α(f) (the sum of the

absolute value of all the coefficients) is at most polynomially large in d, we can choose

ǫ to be polynomially small to cancel this at no change to the asymptotic efficiency.

Secondly, when applying the theorem we will optimise the choice of m (and normally

choose k = 2mK). Often a = Θ(d) and the optimal choice of m is often Θ(d) as

well. However, we will not take m so large because we can only implement an efficient

k-design for k = O(log d/ log log d).

5.4 Application 1: Entropy of a k-design

We now apply the above to show that most unitaries in a k-design generate large

amounts of entropy across any bipartition, provided the dimensions are sufficiently

far apart. This means that, for any initial state, for most choices of a unitary from a k-

design applied to the state, the resulting state will be highly entangled. We go via the

purity of the reduced density matrix, since the entropy function is not a polynomial.

We will call the two systems S (the ‘system’) and E (the ‘environment’) and

calculate the purity of the reduced state. That the purity, tr
[

(

trE UρU
†)2
]

, is a

balanced polynomial of degree 2 is easily seen by noting that the trace is linear and

the reduced state is squared. However, we should check that there are not too many

terms or terms with large coefficients. To do this, we should calculate α to apply

Theorem 5.2.2.

There is a general method for calculating α(f) which we will use. Write f(U) =
∑

i αiMi(U) for monomials Mi. To evaluate α(f) =
∑

i |αi|, calculate f(A) where A
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is the matrix with all entries equal to 1 (so that Mi(A) = 1) and replace αi with |αi|.
Using this here we find

α = d2





∑

ij

|ρij |





2

≤ d4
∑

ij

|ρij |2

= d4||ρ||22
≤ d4.

We now calculate the expected purity:

Lemma 5.4.1. The expected purity of the reduced state is dS+dE
d+1 , where dS is the

dimension of subsystem S and dE = d/dS is the dimension of subsystem E.

Proof. We have

EU∼U(d)||ψS ||22 = EU∼U(d)

[

trFS1S2(trE UρU
† ⊗ trE UρU

†)
]

(5.4.1)

where FS1S2 is swap acting between systems S1 and S2. By linearity of the trace, we

can commute the EU∼U(d) through and use EU∼U(d)

[

UρU † ⊗ UρU †] = I12+F12
d(d+1) to find

EU∼U(d)||ψS ||22 = tr

[ FS1S2

d(d + 1)
(d2
EIS1S2 + dEFS1S2)

]

=
1

d(d + 1)
(d2
EdS + dEd

2
S)

=
dS + dE
d+ 1

Working out the higher moments in this way is difficult (although has been done

in [Gir07]) so we use Levy’s Lemma and Lemma 5.3.3. To use Levy’s Lemma, all we

have to do is find the Lipschitz constant for the purity:

Lemma 5.4.2. The Lipschitz constant for purity is ≤ 2.
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Proof.

η = sup
ψ,φ

∣

∣||ψS ||22 − ||φS ||22
∣

∣

||ψ − φ||2

= sup
ψ,φ

|||ψS ||2 − ||φS ||2| (||ψS ||2 + ||φS ||2)
||ψ − φ||2

Now we use |||S||2 − ||T ||2| ≤ ||S − T ||2 to find

η ≤ sup
ψ,φ

(||ψS ||2 + ||φS ||2) ≤ 2

using the fact that the purity is upper bounded by 1.

Lemma 5.4.3. For µ = dS+dE
d+1 and m an integer with m ≤ k/4 and ν an ǫ-

approximate k-design,

PU∼ν(S(ψS) ≤ − log2 µ− α) ≤ 1

(µ(2α − 1))2m

(

4

(

4m

C1d

)m

+
ǫ

dk
(d4 + µ)2m

)

.

(5.4.2)

Proof. We use the fact that von Neumann entropy is lower bounded by the Renyi

2-entropy i.e. − log2 ||ψS ||22:

S(ψS) ≥ S2(ψS) = − log2 ||ψS ||22. (5.4.3)

Then

PU∼ν(S(ψS) ≤ − log2(1 + δ)µ) ≤ PU∼ν(S2(ψS) ≤ − log2(1 + δ)µ)

= PU∼ν(||ψS ||22 ≥ (1 + δ)µ)

≤ PU∼ν(
∣

∣||ψS ||22 − µ
∣

∣ ≥ δµ)

≤ 1

(µδ)2m

(

4

(

4m

C1d

)m

+
ǫ

dk
(d4 + µ)2m

)

using Theorem 5.2.2 in the last line.

We have written this in a more convenient form in Theorem 5.2.3 which is proved
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in Section 5.8. This is to be compared with the Haar random version Theorem 5.2.1.

As expected, we have n = log2 d appearing in the exponent rather than d. Note also

that our bound does not work well for dS ≈ dE . In fact, in this case, we do not get a

bound that improves with dimension. In order to achieve such a bound in this regime

a different technique will be necessary.

5.5 Application 2: k-designs and Statistical Mechanics

We can also apply these ideas to partially derandomise some of the arguments on the

foundations of statistical mechanics in [PSW06]. In this paper, the authors develop

the idea that the uncertainty in statistical mechanics comes from entanglement rather

than the traditional assumption of the principle of equal a priori probabilities. They

consider the universe being in a pure quantum state and that the uncertainty in the

state of a subsystem comes from the entanglement between this system and the rest

of the universe.

The setting is that there is an arbitrary global linear constraint R. Often this will

be a total energy constraint although this is not assumed. Let the Hilbert space of

states satisfying R be HR. Then let the system and environment Hilbert spaces be

HS and HE respectively. Then

HR ⊆ HS ⊗HE . (5.5.1)

Let the dimensions be dR, dS and dE and let ER = IR
dR

. Note that dR ≤ dSdE , unlike

in the above where we took d = dSdE . Normally we will have dS ≪ dR. The principle

of equal a priori probabilities says that the state of the universe is ER which implies

the subsystem state is the canonical state, given by

ΩS = trE(ER). (5.5.2)

The main result of [PSW06] (the ‘principle of apparently equal a priori probabilities’)
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is that, for almost all pure states of the universe, the subsystem state is almost exactly

the canonical state.

Theorem 5.5.1 (Theorem 1 of [PSW06]). For a randomly chosen state |φ〉 ∈ HR ⊆
HS ⊗HE and arbitrary ǫ > 0, the distance between the reduced density matrix of the

system ρS = trE(|φ〉〈φ|) and the canonical state ΩS (Eqn. 5.5.2) is given probabilisti-

cally by

PU∼U(d)

(

||ρS − ΩS ||1 ≥ ǫ+

√

dS

deff
E

)

≤ 2 exp
(

−C2dRǫ
2
)

(5.5.3)

where C2 = 1/(18π3) and deff
E = 1

trΩ2
E
≥ dR

dS
.

This result gives compelling evidence to replace the principle of equal a priori

probabilities with the principle of apparently equal a priori probabilities, but it does

not address the problem of how the system reaches this state. It will take an extremely

(exponentially) long time for the universe to reach a random pure state, in contrast to

the observed fact that thermalisation occurs quickly. Here, we show that for almost

all unitaries in a k-design applied to the universe, the subsystem state is close to the

canonical state. Since these unitaries can be implemented and sampled efficiently,

this means that equilibrium could be reached quickly to match observations.

We are now ready to show that a k-design gives a small ||ρS − ΩS||1. First, we

have to modify Lemma 5.3.3 slightly:

Lemma 5.5.2. Let X be any non-negative random variable with probability concen-

tration

P(X ≥ δ + η) ≤ Ce−aδ
2

(5.5.4)

where η ≥ 0. Then

EXm ≤ C

(

2m

a

)m/2

+ (2η)m (5.5.5)

for any m > 0.

The proof is very similar to the proof of Lemma 5.3.3.

Now we state and prove the main result in this section:
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Theorem 5.5.3. Let ν be an ǫ-approximate unitary k-design. Then

PU∼ν(||ρS −ΩS||1 ≥ δ) ≤
(

dS
δ2

)k/8
(

2

(

k

2C2dR

)k/8

+

(

4d2
S

dR

)k/8

+
ǫ

dkR
(d2
R + 1)k/2

)

.

(5.5.6)

In particular, with ǫ = 3
2

(

4d3S
dR

)k/8
, k ≤ 8C2d

2
S ,

PU∼ν(||ρS − ΩS ||1 ≥ δ) ≤ 6

(

4d3
S

dRδ2

)k/8

. (5.5.7)

Again, we need dS to be polynomially smaller than dR to obtain non-trivial

bounds.

Proof. We go via the 2-norm and use Lemmas 5.5.2 and 5.3.4.

We have from Theorem 5.5.1 that

PU∼U(d)(||ρS − ΩS||1 ≥ δ + η) ≤ 2e−C2dRδ
2

(5.5.8)

where η =
√

dS

deffE

≤ dS√
dR

. Since ||ρS − ΩS ||2 ≤ ||ρS − ΩS ||1,

PU∼U(d)(||ρS − ΩS ||2 ≥ δ + η) ≤ 2e−C2dRδ
2
. (5.5.9)

We now apply Lemma 5.5.2 to get

EU∼U(d)||ρS − ΩS ||2m2 ≤ 2

(

4m

C2dR

)m

+ (2η)2m. (5.5.10)

So for m ≤ k/4, using Markov’s inequality and Lemma 5.3.4 (with µ = 0) on the

polynomial ||ρS − ΩS||22 :

PU∼ν(||ρS − ΩS||2 ≥ δ) ≤ 1

δ2m

(

2

(

4m

C2dR

)m

+ (2η)2m +
ǫ

dkR
(d2
R + 1)4m

)

. (5.5.11)
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Here, we used an estimate of α, the sum of the moduli of the coefficients:

α ≤ (d2
R + 1)2 (5.5.12)

which we obtain via a similar calculation to that in Section 5.4.

Now we go back to the 1-norm, using ||ρS − ΩS||1 ≤ √
dS ||ρS − ΩS||2 to get

PU∼ν(||ρS − ΩS||1 ≥ δ) ≤ PU∼ν(||ρS − ΩS ||2 ≥ δ/
√

dS) (5.5.13)

≤
(

dS
δ2

)m(

2

(

4m

C2dR

)m

+ (2η)2m +
ǫ

dkR
(d2
R + 1)4m

)

.

(5.5.14)

To obtain the result in Eqn. 5.5.6, we just use η ≤ dS√
dR

and set m = k/8.

To prove the simplified version, first use, as in Section 5.4, that (d2
R+1)4m ≤ 2d8m

R

for m ≤ d2
R/8. This is implied by k ≤ 8C2d

2
S . We then set m = k/8 to find

PU∼ν(||ρS − ΩS||1 ≥ δ) ≤ 2

(

kdS
2C2dRδ2

)k/8

+

(

4d3
S

dRδ2

)k/8

+ 2
ǫ

δk/4
. (5.5.15)

Then, using k ≤ 8C2d
2
S , with ǫ ≤ 3

2

(

4d3S
dR

)k/8
, we obtain the simplified result Eqn. 5.5.7.

5.6 Application 3: Using k-designs for Measurement-

Based Quantum Computing

Here we apply our ideas to partially derandomise some results of Gross, Flammia and

Eisert in [GFE09] and Bremner, Mora and Winter in [BMW09]. The main result in

these two papers is that most states do not offer any advantage over classical compu-

tation when used in the measurement-based quantum computing (MBQC) model. In

MBQC, a classical computer is given access to a large quantum state on which it can

do single qubit measurements. Some states allow for universal quantum computation
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whereas others do not add any extra power to the classical computer. These results

are concerned with the question of characterising which states do and do not work.

Showing that random states do not give any speed up shows that useful states for

MBQC are not generic and so must be carefully constructed.

While the results in these two papers are similar, we will concentrate on the

methods from [GFE09] since their methods are simpler to apply here. They prove

their result by showing that most states are very entangled in the geometric measure

(see Definition 5.6.1). They then use this to show that the measurement outcomes of

even the best possible measurement scheme are almost completely random. In fact,

the state could be thrown away and the measurement outcomes replaced with random

numbers to solve the computational problem just as efficiently. This shows that you

can classically simulate any quantum computation that uses these highly entangled

states. The measure of entanglement they use is the geometric measure:

Definition 5.6.1. The geometric measure of entanglement of a state |Ψ〉 is [Shi95,

BL01]

Eg(|Ψ〉) = − log2 sup
α∈P

|〈α|Ψ〉|2. (5.6.1)

where P is the set of all product states.

They show that any MBQC using a state |Ψ〉 with Eg(|Ψ〉) = n − O(log2 n) can

be efficiently simulated classically. They then show that

Theorem 5.6.2 ([GFE09], Theorem 2). For n ≥ 11,

P|ψ〉∼S(d)(Eg(|Ψ〉) ≤ n− 2 log2 n− 3) ≤ e−n
2
. (5.6.2)

This shows that most states are useless. We partially derandomise this result to

show that most states in an ǫ-approximate (ǫ can be taken as a constant) state n2-

design have high geometric measure of entanglement and thus are useless in the same

way.

We could apply our technique and use Theorem 5.2.2 but in this case, it is simpler
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to directly bound the probability using Markov’s inequality.

Lemma 5.6.3.

P|Ψ〉∼ν(|〈Φ|Ψ〉|2 ≥ δ) ≤ (1 + ǫ)
m!

(dδ)m
≤ (1 + ǫ)

(m

dδ

)m
(5.6.3)

where |Ψ〉 is chosen from an ǫ-approximate state k-design ν, m ≤ k and a positive

integer and |Φ〉 is any fixed state.

Proof. We prove this bound directly using Markov’s inequality:

P|Ψ〉∼ν(|〈Φ|Ψ〉|2 ≥ δ) = P|Ψ〉∼ν(|〈Φ|Ψ〉|2m ≥ δm)

≤
E|Ψ〉∼ν|〈Φ|Ψ〉|2m

δm

=
E|Ψ〉∼ν〈Φ|⊗m|Ψ〉⊗m〈Ψ|⊗m|Φ〉⊗m

δm

=
〈Φ|⊗mE|Ψ〉∼ν [|Ψ〉⊗m〈Ψ|⊗m] |Φ〉⊗m

δm

≤
〈Φ|⊗m(1 + ǫ) Πsym

m

(m+d−1
d−1 )

|Φ〉⊗m

δm

=
1 + ǫ

(

m+d−1
d−1

)

δm

≤ (1 + ǫ)m!

(dδ)m
≤ (1 + ǫ)

(m

dδ

)m
.

We now prove the main result in this section:

Theorem 5.6.4. For |Ψ〉 randomly drawn from an ǫ-approximate state k-design with

d = 2n

P|Ψ〉∼ν(Eg(|Ψ〉) ≤ n−δ) ≤ (1+ǫ) exp2(k log2 2k+4n log2 10n−kδ+4n(n−δ)). (5.6.4)

In particular, for k = n2, δ = 3 log2 n+ 5 and ǫ = 1,

P|Ψ〉∼ν(Eg(|Ψ〉) ≤ n− 3 log2 n− 5) ≤ 2 · n−n2
. (5.6.5)
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We note that this bound is almost the same as in Theorem 5.6.2. It only works for

slightly larger deviations from n, which is why we obtain a slightly better probability

bound. Note also that we can obtain an exponential bound in n (not d = 2n) because

the design is exponentially large in n.

Proof. This proof closely mirrors the proof of Theorem 2 in [GFE09]. We use the idea

of a γ-net. Nγ,n is a γ-net on product states if

sup
|α〉∈P

inf
|α̃〉∈Nδ,n

∣

∣

∣

∣|α〉 − |α̃〉
∣

∣

∣

∣

2
≤ γ/2. (5.6.6)

In [GFE09], it is shown that such a net exists with |Nγ,n| ≤ (5n/γ)4n. We then

proceed by showing that most states in the state design have small overlap with every

state in the net using the union bound and Lemma 5.6.3. Finally, since every state is

close to one in the net, we can show that most states in the design have small overlap

with every product state.

We now formalise the above. Using Lemma 5.6.3 and the union bound,

P|Ψ〉∼ν

(

sup
|α̃〉∈Nγ,n

|〈α̃|Ψ〉|2 ≥ δ′/2

)

≤ |Nγ,n|(1+ǫ)

(

2k

dδ′

)k

≤
(

5n

γ

)4n

(1+ǫ)

(

2k

2nδ′

)k

.

(5.6.7)

Now, we need to bound

P|Ψ〉∼ν(Eg(|Ψ〉) ≤ n− δ) = P|Ψ〉∼ν

(

− log2 sup
|α〉∈P

|〈α|Ψ〉|2 ≤ n− δ

)

= P|Ψ〉∼ν

(

sup
|α〉∈P

|〈α|Ψ〉|2 ≥ 2−(n−δ)
)

.

We now claim that

sup
|α〉∈P

|〈α|Ψ〉|2 ≥ δ′ ⇒ sup
|α̃〉∈Nδ′/2,n

|〈α̃|Ψ〉|2 ≥ δ′/2. (5.6.8)

To prove this claim, let |α〉 be the state that achieves the supremum on the left hand

side, and let |α̃〉 be the state closest to it in the δ′/2-net. It is shown in [GFE09] that
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this implies for any |Ψ〉
∣

∣|〈α|Ψ〉|2 − |〈α̃|Ψ〉|2
∣

∣ ≤ δ′/2. (5.6.9)

Therefore

|〈α̃|Ψ〉|2 ≥ |〈α|Ψ〉|2 − δ′/2

≥ δ′/2.

This implies that the supremum over all states in the net must be at least δ′/2 to

prove the claim.

We can now finish the proof. Set δ′ = 2−(n−δ) in Eqn. 5.6.8 and use Eqn. 5.6.7

with γ = δ′/2 to find

P|Ψ〉∼ν

(

sup
|α〉∈P

|〈α|Ψ〉|2 ≥ 2−(n−δ)
)

≤ P|Ψ〉∼ν



 sup
|α̃〉∈N

2−(n−δ)−1,n

|〈α̃|Ψ〉|2 ≥ 2−(n−δ)−1





≤ (1 + ǫ) exp2(k log2 2k + 4n log2 10n− kδ + 4n(n− δ)).

Combining this with the arguments of [GFE09] shows that most states in a state

n2-design on n qubits are useless for MBQC. This shows that even many efficiently

preparable states are useless.

5.7 Conclusions

We have seen how to turn large deviation bounds for Haar-random unitaries into

bounds for k-designs. The main technique was applied to show that unitaries from

k-designs generate large amounts of entanglement. Then we showed that, if the dy-

namics of the universe produced a k-design, the entanglement generated would be

sufficient to reproduce the principle of equal a priori probabilities. Finally we showed

that most states in sufficiently large state designs are useless for measurement-based
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quantum computing, in the sense that computation using them can be efficiently

simulated classically.

However, there are other bounds for which our technique does not work. Since

we cannot obtain exponential bounds for polynomially sized designs, our technique

cannot directly derandomise some bounds. Some results, for example showing that

the ∞-norm of the reduced state of a random pure state is close to 1/dS [HHL04], are

proven by using an ǫ-net of states and the union bound. Since the ǫ-net is exponen-

tially large, exponentially small bounds are required. We do not know how to apply

our idea to results of this kind and still have k = poly(log d). (Note that we could

cope with the ǫ-net in Section 5.6 since it was just a net on product states which is

considerably smaller.)

It is also possible that our ideas could be used to completely derandomise some

constructions (e.g. locking [HLSW04, DHL+04]). If we could show that unitaries

drawn from a k-design work with non-zero probability, and come up with an efficient

sampling method, then we could obtain efficient randomised constructions.

5.8 Proof of Theorem 5.2.3

Here we prove the more convenient form of Lemma 5.4.3 stated as Theorem 5.2.3.

Proof of Theorem 5.2.3. Firstly, we will write the left hand side of Eqn. 5.4.2 in a

more useful way. Using ln(1 + x) ≤ x, we find

− log2 µ ≥ log2 dS − β

where β = 1
ln 2

dS
dE

, following the notation in [HLW06]. This means

PU∼ν(S(ψS) ≤ log2 dS − α− β) ≤ PU∼ν(S(ψS) ≤ − log2 µ− α)

≤ 1

(µ(2α − 1))2m

(

4

(

4m

C1d

)m

+
ǫ

dk
(d4 + µ)2m

)

.

We now simplify the right hand side. Let δ = 2α − 1. For dS ≥ 2, we have µ ≥ 1/dS .
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We shall also assume that m = k/8. This gives us (using µ ≤ 1)

PU∼ν(S(ψS) ≤ log2 dS − α− β) ≤
(

dS
δ

)k/4
(

4

(

k

2C1d

)k/8

+ ǫ

(

1 +
1

d4

)k/4
)

.

(5.8.1)

Now, one can easily show (e.g. by induction on n) that

(1 + δ)n ≤ 2 (5.8.2)

for 2nδ ≤ 1. We use this for n = k/4 and δ = 1/d4. The condition is then k ≤ 2d4,

which we shall assume (we will set k = log d/ log log d later). We now obtain

PU∼ν(S(ψS) ≤ log2 dS − α− β) ≤
(

dS
δ

)k/4
(

4

(

k

2C1d

)k/8

+ 2ǫ

)

. (5.8.3)

We will now take ǫ = 2
(

k
2C1d

)k/8
, so that the two terms are the same. log 1/ǫ is

poly(log d) so this remains efficient. Now

PU∼ν(S(ψS) ≤ log2 dS − α− β) ≤ 8

(

d2
Sk

2C1dδ2

)k/8

. (5.8.4)

Assuming that δ2 >
kd2S
2C1d

, we should take k as large as possible up to 2C1δ2d
ed2S

, when the

right hand side is maximised. We then find the result after further simplification.
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Part II

Quantum Learning
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Chapter 6

Learning and Testing Algorithms

for the Clifford Group

6.1 Introduction

A central problem in quantum computing is to determine an unknown quantum state

from measurements of multiple copies of the state. This process is known as quantum

state tomography (see [NC00] and references therein). By making enough measure-

ments, the probability distributions of the outcomes can be estimated from which

the state can be inferred. A related problem is that of quantum process tomography,

where an unknown quantum evolution is determined by applying it to certain known

input states. There are several methods for doing this, including what are known as

Standard Quantum Process Tomography [CN97, PCZ97] and Ancilla Assisted Pro-

cess Tomography [DLP01, Leu03]. These methods work by using state tomography

on the output states for certain input states.

However, all these procedures share one important downside: the number of mea-

surements required increases exponentially with the number of qubits. This already

presents problems even with systems achievable with today’s technology, for which

complete tomographical measurements can take hours (e.g. [HHR+05]) making tomog-

raphy of larger systems unfeasible. Unfortunately this exponential cost is necessary to
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determine a completely unknown state or process, since there are exponentially many

parameters to measure. To make tomography feasible for larger systems, we need to

find a restriction that requires fewer measurements, ideally polynomially many.

One way to improve the measurement, or query, complexity is to assume some prior

knowledge of the process. For example, suppose the process was known to be one of a

small number of unitaries, then the task is just to decide which. This is the approach

we take here. As a simple example, consider being given a black box implementing

an unknown Pauli matrix. By applying this to half a maximally entangled state, the

Pauli can be identified with one query. This is essentially superdense coding [BW92]

and is explained in Section 6.3.1. Indeed, if the black box performed a tensor product

of arbitrary Paulis on n qubits then it too can be identified with just one query.

We extend this to work for elements of the Clifford group (the normaliser of the

Pauli group; see Definition 6.2.1) and show that any member of the Clifford group

can be learnt with O(n) queries, which we show is optimal. The Clifford group is

an important subgroup of the unitary group that has found uses in quantum error

correction and fault tolerance [CRSS97, Sho96, Got98].

Then generalising further, we show that elements of the Gottesman-Chuang hi-

erarchy [GC99] (see Definition 6.2.2), also known as the Ck hierarchy, can also be

learnt efficiently. As the level k increases, the set Ck includes more and more unitaries

so this implies ever larger sets can be learnt, although the number of queries scales

exponentially with k. Our methods also work if the unitary is known to be close to a

Clifford (or any element of Ck for some known k) rather than exactly a Clifford.

We also give a Clifford testing algorithm, which determines whether an unknown

unitary is close to a Clifford or far from every Clifford. This is an extension of the Pauli

testing algorithm given in [MO08]. Indeed, our results are closely related to results in

[MO08] and we use some of the algorithms presented there as ingredients. Our results

can also be compared with [Aar07], which contains methods to approximately learn

quantum states. Another related result is that of Aaronson and Gottesman [AG09],

which provides a method of learning stabiliser states with linearly many copies.
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We only consider query complexity although, at least for the Clifford group results,

our methods are computationally efficient too.

The rest of the chapter is organised as follows. In Section 6.2, we define the Pauli

and Clifford groups and the Gottesman-Chuang hierarchy. In Section 6.3 we present

our algorithm for exact learning of Clifford and Ck elements. In Section 6.4 we show

how to find the closest element of Ck to an unknown unitary. In Section 6.5 we present

our Clifford testing algorithm and then conclude in Section 6.6.

This chapter has been published previously as [Low09b].

6.2 The Pauli and Clifford Groups and the Gottesman-

Chuang Hierarchy

Firstly, we define the Pauli group. Call the set of all Pauli matrices on n qubits P̂.

We then have |P̂| = 4n. We write matrices in the Pauli basis using the normalisation

ρ =
∑

p γ(p)σp. To make P̂ into a group, the Pauli group P, we must include each

matrix in P̂ with phases {±1,±i}.
We can now define the Clifford group:

Definition 6.2.1 (The Clifford group). The Clifford group is the normaliser of the

Pauli group i.e.

C = {U ∈ U(2n) : UPU † ⊆ P}.

Then the Gottesman-Chuang hierarchy is a generalisation:

Definition 6.2.2 (The Gottesman-Chuang hierarchy [GC99]). Let C1 be the Pauli

group P. Then level Ck of the hierarchy is defined recursively:

Ck = {U ∈ U(2n) : UPU † ⊆ Ck−1}.

By definition, C2 is the Clifford group C. For k > 2, Ck is no longer a group but

contains a universal gate set, whereas C1 and C2 are not universal.
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6.3 Learning Gottesman-Chuang Operations

Before we give our algorithm for learning Gottesman-Chuang operations, we present

a simple method for learning Pauli operations, which we use as the main ingredient.

6.3.1 Learning Pauli Operations

This is due to [MO08] and is in fact identical to the superdense-coding protocol

[BW92].

Theorem 6.3.1 ([MO08], Proposition 20). Pauli operations can be identified with

one query and in time O(n).

Proof. Apply the operator σp to half of the maximally entangled state

|ψ〉 = 2−n/2
∑

i

|ii〉.

For different choices of σp, the resulting states are orthogonal so can be perfectly

distinguished:

〈ψ| (σp ⊗ I) (σq ⊗ I) |ψ〉 = 2−n
∑

ij

〈ii|σpσq ⊗ I|jj〉

= 2−n
∑

ij

〈i|σpσq|j〉〈i|j〉

= 2−n
∑

i

〈i|σpσq|i〉

= 2−n trσpσq

= δpq.

The time complexity O(n) comes from the preparation and measurement operations.
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6.3.2 Learning Clifford Operations

We can now present our algorithm for learning Clifford operations to illustrate our

main idea for learning unitaries in the Gottesman-Chuang hierarchy. We will use the

fact that knowing how a unitary acts by conjugation on all elements of P̂ identifies it

uniquely (up to phase):

Lemma 6.3.2. Knowing UσpU
† for all σp ∈ P̂ uniquely determines U , up to global

phase.

Proof. The Pauli matrices form a basis for all 2n× 2n matrices so knowing the action

of U on the Paulis is enough to determine the action of U on any matrix up to phase.

The phase cannot be determined because action by conjugation does not reveal the

phase.

Now let G = {σxi , σzi}ni=1 where σxi (σzi) is the matrix with σx (σz) acting on

qubit i and trivially elsewhere. We think of this as a set of generators for P̂ since

each element of P̂ can be written as a product of elements of G, up to phase. Using

this, knowledge of how U acts on elements of G is sufficient to determine the action

on all of P̂ :

Lemma 6.3.3. UσpU
† for any σp ∈ P̂ can be calculated from knowledge of UσgU

†

for each σg ∈ G.

Proof. Let σp = ασg1 . . . σgm for σgi ∈ G where α is a phase. Then

UσpU
† = αUσg1 . . . σgmU

† = αUσg1U
† . . . UσgmU

†.

With these definitions and observations, we can now present the Clifford learning

algorithm.

Theorem 6.3.4. Given oracle access to an unknown Clifford operation C and its

conjugate C†, C can be determined exactly (up to global phase) with 2n+ 1 queries to

C and 2n to C†. The algorithm runs in time O(n2).
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Proof. From the definition of the Clifford group, CσpC
† ∈ P for all σp ∈ P̂. Note

that CσpC
† is not necessarily a Pauli operator in P̂ because there is a phase of ±1

(complex phases are not allowed because CσpC
† is Hermitian). Determining which

Pauli operator and phase for every σp would be sufficient to learn C using Lemma

6.3.2. But from Lemma 6.3.3, we only need to know CσgC
† for each σg ∈ G.

Let CσxiC
† = αiσai and CσziC

† = βiσbi , where αi, βi = ±1. Knowing just σai

and σbi is enough to specify C up to a Pauli correction factor σq which gives the

phases αi and βi. Choosing σq that anticommutes with σxi flips the sign of αi and

similarly for σzi . We now present the algorithm:

1. Apply CσxiC
† and CσziC

† for each i and use Theorem 6.3.1 to determine σai

and σbi . This uses 2n queries to both C and C†.

2. Let C ′ be such that C ′σxiC
′† = σai and C ′σziC

′† = σbi i.e. the phases are all

+1. Then, choosing a phase for C ′, we can write C = C ′σ where

σ =
∏

i:αi=−1

σzi

∏

i:βi=−1

σxi . (6.3.1)

Then implement C ′†C to determine σ using Theorem 6.3.1. This uses one query

to C. We can now calculate the phases αi and βi.

To work out the time complexity, note that in step 1 the O(n) time Pauli learning

algorithm is called 2n times. Then for step 2, the Clifford C ′ can be implemented in

O(n2) time using for example Theorem 10.6 of [NC00].

We now show that this algorithm is optimal, in terms of number of queries, up to

constant factors:

Lemma 6.3.5. Any method of learning a Clifford gate requires at least n queries.

Proof. Each application of the gate C can give at most 2n bits of mutual information

about C. This follows from the optimality of superdense coding [BW92]. The Clifford
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group (modulo global phase) is of size [CRSS98] 2n
2+2n+3

∏n
j=1(4

j − 1) ≥ 22n2+n+3.

To identify an element with m queries, we therefore need

22nm ≥ 22n2+n+3 (6.3.2)

which implies m ≥ n.

It is unfortunate that access to C† is also required, but we do not know a method

with optimal query complexity that works without C†. There are however methods

that use O(n2) queries that do not use C†. The result of [HW06] can be used to

show that O(n2) queries to C are sufficient, by distinguishing the states C ⊗ I|ψ〉 for

different Cliffords C and where |ψ〉 is the maximally entangled state. We can use

Lemma 6.4.4 to show that these states are far apart in the distance measure used in

[HW06], allowing us to apply their result.

6.3.3 Learning Gottesman-Chuang Operations

Theorem 6.3.4 can easily be generalised to learning any operation from the Ck hier-

archy:

Theorem 6.3.6. Given oracle access to an unknown operation C ∈ Ck and its con-

jugate C†, C can be determined exactly (up to phase) with (2n)k−1
2n−1 queries to C and

(2n)k−1 to C†.

Proof. The proof is by induction. The base case is for the Paulis and is proven in

Theorem 6.3.1. Then, to learn C ∈ Ck+1, we assume we have a learning algorithm for

members of Ck. Apply CσgC
† for each σg ∈ G. These operations are elements of Ck

so use the learning algorithm for Ck to determine these up to phase. Then use the

last step of Theorem 6.3.4 to determine the phases.

We now determine the number of queries to C and C†. Let T (k) be the number
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of queries to C and T ′(k) the number of queries to C†. We have the recurrences

T (k + 1) = 2nT (k) + 1

T (1) = 1 (6.3.3)

and

T ′(k + 1) = 2nT ′(k)

T ′(2) = 2n (6.3.4)

which have solutions T (k) = (2n)k−1
2n−1 and T ′(k) = (2n)k−1 (with T ′(1) = 0).

6.4 Learning Unitaries Close to Ck Elements

Here we suppose that we are given a unitary that is known to be close to an element

of Ck for some given k. We present a method for finding this element. But first we

must define our distance measure.

We would like our distance measure to not distinguish between unitaries that

differ by just an unobservable global phase. We define a ‘distance’ D below with this

property. However, firstly define the distance D+ to be a normalised 2-norm distance:

Definition 6.4.1. For U1 and U2 d× d matrices,

D+(U1, U2) :=
1√
2d

||U1 − U2||2.

where ||A||2 =
√

trA†A.

We have chosen the normalisation so that 0 ≤ D+(U1, U2) ≤ 1. We now define

our phase invariant ‘distance’:

Definition 6.4.2. For U1 and U2 d× d matrices,

D(U1, U2) :=
1√
2d2

||U1 ⊗ U∗
1 − U2 ⊗ U∗

2 ||2
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This is not a true distance since D(U1, U2) = 0 does not imply U1 = U2, but that

U1 and U2 are the same up to a phase so the difference is unobservable. From the

2-norm definition, we can show:

Lemma 6.4.3.

D+(U1, U2) =

√

1 − Re
trU1U

†
2

d
(6.4.1)

and

D(U1, U2) =

√

√

√

√1 −
∣

∣

∣

∣

∣

trU1U
†
2

d

∣

∣

∣

∣

∣

2

. (6.4.2)

From this we can easily see that 0 ≤ D(U1, U2) ≤ 1 with equality if and only if

U1 and U2 are orthogonal. Further note that by the unitary invariance of the 2-norm,

both D and D+ are unitarily invariant and from the triangle inequality for the 2-norm

they both obey the triangle inequality.

Our approximate learning method will find the unique closest element of Ck to U .

In order to guarantee uniqueness, the distance must be upper bounded:

Lemma 6.4.4. If D(U,C) < 1
2k−1/2 for some C ∈ Ck then C is unique up to phase.

The proof is in Section 6.7.

Theorem 6.4.5. Given oracle access to U and U † and k such that D(U,C) ≤ ǫ for

some C ∈ Ck with

ǫ′ :=
√

2(1 − (2k−1ǫ)2) − 1 > 0 (6.4.3)

then C can be determined with probability at least 1 − δ with

O

(

1

ǫ′2
(2n)k−1 log

(2n + 1)k−1

δ

)

queries.

Proof. By Lemma 6.4.4, C is unique up to phase. We now prove the Theorem by

induction.

163



For k = 1, use Proposition 21 of [MO08] to learn the closest Pauli operator. This

works by repeating the Pauli learning method Theorem 6.3.1 and taking the majority

vote. This uses O
(

1
ǫ′2 log 1

δ

)

queries to succeed with probability at least 1 − δ.

Now for the inductive step. Assume we have a learning algorithm for level k.

Then for C ∈ Ck+1, let CσgiC
† = Cgi for σgi ∈ G. By Lemma 6.8.1, we have

D(UσgiU
†, Cgi) ≤ 2ǫ. Use the learning algorithm for level k to determine Cgi up to

phase for all i. Then to find the phases we use the same method as before: implement

any C ′ with C ′σgiC
′† = ±Cgi for any (known) choice of phase. Then C ′ = Cσq for

some Pauli operator σq. We can determine σq by implementing C ′†U and using the

k = 1 learning algorithm since

D(C ′†U, σq) = D(U,C ′σq)

= D(U,C) ≤ ǫ. (6.4.4)

Now we calculate the success probabilities and number of queries. There are 2n + 1

calls to the algorithm at lower levels, which all succeed with probability at least 1− δ.
So at this level the success probability is at least 1 − (2n + 1)δ. So to succeed with

probability at least 1− δ we must replace δ with δ/(2n+1). Then the overall number

of queries is

2n ·O
(

1

ǫ′2
(2n)k−1 log

(2n + 1)k

δ

)

+ 1 = O

(

1

ǫ′2
(2n)k log

(2n + 1)k

δ

)

. (6.4.5)

We remark that there is only O(k log n) overhead (for constant ǫ′ and δ) over the

exact learning algorithm of Theorem 6.3.6.

6.5 Clifford Testing

Here we present an efficient algorithm to determine whether an unknown unitary

operation is close to a Clifford or far from every Clifford. Whereas the previous

results allow us to find the Clifford operator close to the given black box unitary,
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in this section we are concerned with determining how far the given unitary is from

any Clifford. We do not measure this directly, but provide an algorithm of low query

complexity that decides if the given unitary is close to a Clifford or far from all.

This type of algorithm is known in computer science as a property testing algorithm

and has many applications, including the theory of probabilistically checkable proofs

[ALM+98]. The result in this section could be extended to work for any level of the

Gottesman-Chuang hierarchy although for simplicity we only present the version for

Cliffords.

The key ingredient to our method will be a way of estimating the Pauli coefficients:

Lemma 6.5.1 (Lemma 23 of [MO08]). For any p ∈ {I, x, y, z}n and unitary U , the

Pauli coefficients |γ(p)| = 1
2n |trUσp| can be estimated to within ±η with probability

1 − δ using O
(

1
η2 log 1

δ

)

queries.

This is a generalisation of Theorem 6.3.1 and the method is similar. Instead of

there being only one possible outcome, now the probability of obtaining the outcome

corresponding to σp is estimated. This probability is equal to |γ(p)|2.

Theorem 6.5.2. Given oracle access to U and U † with the promise that for 0 < ǫ < 1

either

a) CLOSE: there exists C ∈ C such that D(U,C) ≤ ǫ√
32n

or

b) FAR: for all C ∈ C, D(U,C) > ǫ and there exists C ∈ C such that D(U,C) ≤ 1/3

holds then there is a O
(

n3

ǫ2
log n

δ

)

algorithm that determines which with probability at

least 1 − δ.

Proof. In both cases, we have that D(U,C) < 1/3 for some C, which ensures that C

is unique (using Lemma 6.4.4, since 1
3 <

1
2
√

2
) and can be found using Theorem 6.4.5

with O
(

n log n
δ

)

queries. Then the algorithm is:

1. For each σg ∈ G, measure the Pauli coefficient of CσgC
† in UσgU

† (i.e. measure
∣

∣trUσgU
†CσgC†∣

∣ /2n) to precision ǫ2

16n2 using Lemma 6.5.1.
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2. If all the coefficients are found to have modulus at least 1 − 3ǫ2

16n2 then output

CLOSE else output FAR.

This works because, for the two possibilities CLOSE and FAR:

a) Using Lemma 6.8.1, D(U,C) ≤ ǫ√
32n

implies that for all σp ∈ P̂ ,

D(UσpU
†, CσpC

†) ≤ 2ǫ√
32n

. (6.5.1)

Since we will only apply UσgU
† for σg ∈ G we restrict this to only the generators

to find that for all σg ∈ G,

D(UσgU
†, CσgC†) ≤ 2ǫ√

32n
(6.5.2)

giving
∣

∣

∣

∣

trUσgU
†CσgC†

2n

∣

∣

∣

∣

2

≥ 1 − ǫ2

8n2
(6.5.3)

for every generator σg. We need a bound on the non-squared coefficients, which

follows directly:
∣

∣

∣

∣

trUσgU
†CσgC†

2n

∣

∣

∣

∣

≥ 1 − ǫ2

8n2
. (6.5.4)

Therefore when measuring the coefficients to precision ǫ2

16n2 , all results will give

at least 1 − 3ǫ2

16n2 .

b) Using the contrapositive of Lemma 6.8.2, D(U,C) > ǫ implies that there exists

σp ∈ P̂ such that

D+(UσpU
†, CσpC†) > ǫ. (6.5.5)

Using the contrapositive of Lemma 6.8.3 this in turn implies there exists σg ∈ G

such that

D+(UσgU
†, CσgC†) >

ǫ

2n
, (6.5.6)

which means that for at least one σg ∈ G, UσgU
† will have a small overlap with
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CσgC
† i.e. there exists σg ∈ G such that

∣

∣

∣

∣

trUσgU
†CσgC†

2n

∣

∣

∣

∣

< 1 − ǫ2

4n2
. (6.5.7)

The C returned by the application of Theorem 6.4.5 is such that trUσgU
†CσgC†

is positive, which justifies inserting the absolute value signs above when using

D+ rather than D. This implies that at least one coefficient will be found to be

less than 1 − 3ǫ2

16n2 when measuring to precision ǫ2

16n2 .

6.6 Conclusions and Further Work

We have shown how to exactly identify an unknown Clifford operator in O(n) queries,

which we show is optimal. This is then extended to cover elements of the Ck hierarchy

and for unitaries that are only known to be close to Ck operations. The key to

the Clifford learning algorithm is to apply CσpC
† and then find the resulting Pauli

operator.

A way of extending this idea could be to learn unitaries from larger sets. Suppose

V is a set of unitaries with the property that for every V ∈ V, V σpV
† is a linear

combination of a constant number of Paulis. Then V can be learnt in the same

way as above, using the quantum Goldreich-Levin algorithm of [MO08], which can

efficiently find which Paulis have large overlap with an input unitary. However, we

have not been able to find interesting sets V other than the Clifford group with this

property.

We also presented a Clifford testing algorithm, which determines whether a given

black-box unitary is close to a Clifford or far from every Clifford. This can be seen

as a quantum generalisation of quadratic testing, just as Pauli testing can be seen

as a quantum generalisation of linearity testing. Property testing of this form is

used to prove the PCP theorem [ALM+98] so these quantum testing results could

potentially be useful in proving a quantum PCP theorem. It would also be interesting

to strengthen the testing method in Theorem 6.5.2 to remove the O(1/n) difference
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between the close and far conditions.

Finally, it would be interesting to see if it is possible to remove the requirement

to have access to U †. However, using both U and U † is the key to our method so we

do not know if a method without U † is possible with low query complexity.

6.7 Proof of Lemma 6.4.4

Proof of Lemma 6.4.4. The proof is by induction. The base case is for k = 1 when

we have the Pauli group. Without loss of generality, assume C is a Pauli operator

with no phase. Let C = σp.

Expand U in the Pauli basis:

U =
∑

q

γ(q)σq. (6.7.1)

Since U is unitary, we have
∑

q |γ(q)|2 = 1. By Lemma 6.4.3,

D(U, σp)
2 = 1 −

∣

∣

∣

∣

trσpU

2n

∣

∣

∣

∣

2

(6.7.2)

which implies

|γ(p)|2 ≥ 1 − ǫ2. (6.7.3)

Now, suppose for contradiction that there exists σp1 6= σp2 with D(U, σp1) ≤ ǫ and

D(U, σp2) ≤ ǫ. Then by the above, |γ(p1)|2, |γ(p2)|2 ≥ 1 − ǫ2. But there is also the

constraint |γ(p1)|2 + |γ(p2)|2 ≤ 1 which combined give

ǫ ≥ 1√
2

(6.7.4)

which is false by assumption. This implies σp1 = σp2, which proves the base case.

To prove the inductive step, again assume for contradiction that there exist

C1, C2 ∈ Ck+1 with C1 6= C2 and D(U,C1) ≤ ǫ and D(U,C2) ≤ ǫ. Then there
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exists σg ∈ G with

C1σgC
†
1 =: C1g 6= C2g := C2σgC

†
2. (6.7.5)

Here, C1g, C2g ∈ Ck.
Using Lemma 6.8.1, D(UσgU

†, C1g) ≤ 2ǫ and D(UσgU
†, C2g) ≤ 2ǫ.

Now there are two cases. Firstly, suppose we can choose σg such that C1σgC
†
1 6=

±C2σgC
†
2. Then C1g and C2g are not equivalent up to phase so, using the inductive

hypothesis, we must have

2ǫ ≥ 1

2k−1/2
(6.7.6)

or

ǫ ≥ 1

2(k+1)−1/2
(6.7.7)

which is again false by assumption.

For the other case, C1σgC
†
1 = ±C2σgC

†
2 for all σg ∈ G. This implies that C2 =

C1σq for some Pauli σq 6= I. Then we have

D(U,C1) ≤ ǫ

D(U,C1σq) ≤ ǫ (6.7.8)

which by unitary invariance gives

D(C†
1U, I) ≤ ǫ

D(C†
1U, σq) ≤ ǫ. (6.7.9)

But we proved that this is impossible in this range of ǫ in the k = 1 proof above.

6.8 Miscellaneous Lemmas

Here we prove some miscellaneous lemmas used earlier in the chapter.

The first lemma says that for two close operators U1 and U2, U1σpU
†
1 is close to

U2σpU
†
2 for all Paulis σp:
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Lemma 6.8.1. If D(U1, U2) ≤ δ then for all σp ∈ P̂,

D(U1σpU
†
1 , U2σpU

†
2) ≤ 2δ.

Proof. Let U1 = V U2 and U2p = U2σpU
†
2 . Then we simply apply the triangle inequal-

ity for D and unitary invariance:

D(U1σpU
†
1 , U2σpU

†
2) = D(V U2pV

†, U2p)

= D(V U2p, U2pV )

≤ D(V U2p, U2p) +D(U2p, U2pV )

= D(V, I) +D(I, V )

= 2D(U1, U2).

The next lemma is a converse to this:

Lemma 6.8.2. If for all σp ∈ P̂

D+(U1σpU
†
1 , U2σpU

†
2 ) ≤ δ (6.8.1)

then

D(U1, U2) ≤ δ. (6.8.2)

Proof. If D+(U1σpU
†
1 , U2σpU

†
2 ) ≤ δ then 1

2n Re trU1σpU
†
1U2σpU

†
2 ≥ 1 − δ2. Since this

is true for all σp, we can take the average of this over the whole of P̂ and use the fact

that for any d× d matrix A 1
4n

∑

σp∈P̂ σpAσp = I
2n trA (the Paulis are a 1-design) to

find
1

2n
Re trU1

(

I

2n
trU †

1U2

)

U †
2 ≥ 1 − δ2 (6.8.3)

which simplified gives
∣

∣

∣

∣

∣

trU1U
†
2

2n

∣

∣

∣

∣

∣

2

≥ 1 − δ2 (6.8.4)

giving the desired result.
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Now we show how to go from distances for just the generators G to distances for

the whole of P̂:

Lemma 6.8.3. If for all σg ∈ G

D+(U1σgU
†
1 , U2σgU

†
2) ≤ δ (6.8.5)

then for all σp ∈ P̂
D+(U1σpU

†
1 , U2σpU

†
2) ≤ 2nδ (6.8.6)

Proof. The proof is by induction on the number of generators required to make σp,

using the triangle inequality for D+.

171



Bibliography

[Aar07] S. Aaronson. The learnability of quantum states. Proc. R. Soc. A, 463:3089–

3114, 2007. arXiv:quant-ph/0608142.

[Aar09] S. Aaronson. Quantum Copy-Protection and Quantum Money. IEEE Con-

ference on Computational Complexity 2009, 2009.

[ABI86] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algo-

rithm for the maximal independent set problem. J. Algorithms, 7(4):567–

583, 1986.

[ABW09] A. Ambainis, J. Bouda, and A. Winter. Nonmalleable encryption of quan-

tum information. J. Math. Phys., 50(4):042106, 2009. arXiv:0808.0353.

[ADHW06] A. Abeyesinghe, I. Devetak, P. Hayden, and A. Winter. The mother

of all protocols: Restructuring quantum information’s family tree, 2006.

arXiv:quant-ph/0606225.

[AE07] A. Ambainis and J. Emerson. Quantum t-designs: t-wise independence in

the quantum world. IEEE Conference on Computational Complexity 2007,

pages 129–140, 2007. arXiv:quant-ph/0701126v2.

[AG09] S. Aaronson and D. Gottesman, 2009. Unpublished.

[AK62] V. I. Arnold and A. L. Krylov. Uniform distribution of points on a sphere

and some ergodic properties of solutions of linear ordinary differential equa-

tions in a complex domain. Soviet Math. Dokl., 4(1), 1962.

172



[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verifica-

tion and the hardness of approximation problems. J. ACM, 45(3):501–555,

1998.

[AMTd00] A. Ambainis, M. Mosca, A. Tapp, and R. de Wolf. Private Quantum Chan-

nels. 41st Annual IEEE Symposium on Foundations of Computer Science,

pages 547–553, 2000.

[AN08] N. Alon and A. Nussboim. k-Wise Independent Random Graphs. 49th

Annual IEEE Symposium on Foundations of Computer Science, 0:813–822,

2008. arXiv:0804.1268.

[AS04] A. Ambainis and A. Smith. Small Pseudo-Random Families of Matrices:

Derandomizing Approximate Quantum Encryption. Proceedings of RAN-

DOM 2004, LNCS, 3122:249–260, 2004. arXiv:quant-ph/0404075.

[Aub09] G. Aubrun. On Almost Randomizing Channels with a Short Kraus Decom-

position. Comm. Math. Phys., 288:1103–1116, 2009. arXiv:0805.2900.

[Bar02] H. Barnum. Information-disturbance tradeoff in quantum measurement

on the uniform ensemble and on the mutually unbiased bases, 2002.

arXiv:quant-ph/0205155.

[BBD+97] A. Barenco, A. Berthiaume, D. Deutsch, A. Ekert, R. Jozsa, and C. Mac-

chiavello. Stabilization of Quantum Computations by Symmetrization.

SIAM J. Comput., 26(5):1541–1557, 1997. arXiv:quant-ph/9604028.

[BFP+72] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Linear

time bounds for median computations. 4th Annual ACM Symposium on

Theory of Computing, pages 119–124, 1972.

[BG06] J. Bourgain and A. Gamburd. New results on expanders. C. R. Acad. Sci.

Paris, Ser. I, 342:717–721, 2006.

173



[BH08] A. Brodsky and S. Hoory. Simple Permutations Mix Even Better. Random

Struct. Algorithms, 32(3):274–289, 2008. arXiv:math/0411098.

[BHL+05] C.H. Bennett, P. Hayden, D.W. Leung, P.W. Shor, and A. Winter. Remote

preparation of quantum states. IEEE Trans. Inform. Theory, 51(1):56–74,

2005.

[BL01] H. Barnum and N. Linden. Monotones and invariants for multi-particle

quantum states. J. Phys. A, 34(35):6787–6805, 2001. arXiv:quant-

ph/0103155.

[BMW09] M. J. Bremner, C. Mora, and A. Winter. Are Random Pure States Use-

ful for Quantum Computation? Phys. Rev. Lett., 102(19):190502, 2009.

arXiv:0812.3001.

[BR94] M. Bellare and J. Rompel. Randomness-efficient oblivious sampling. 35th

Annual IEEE Symposium on Foundations of Computer Science, pages 276–

287, 1994.

[BT07] A. Ben-Aroya and A. Ta-Shma. Quantum expanders and the quantum

entropy difference problem, 2007. arXiv:quant-ph/0702129.

[BW92] C. H. Bennett and S. J. Wiesner. Communication via one- and two-particle

operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett., 69(20):2881–

2884, 1992.

[CN97] I. L. Chuang and M. A. Nielsen. Prescription for experimental determina-

tion of the dynamics of a quantum black box. Journal of Modern Optics,

44:2455–2467, 1997. arXiv:quant-ph/9610001.

[CRSS97] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane. Quantum

Error Correction and Orthogonal Geometry. Phys. Rev. Lett., 78(3):405–

408, 1997.

174



[CRSS98] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane. Quantum

Error Correction Via Codes Over GF(4). IEEE Trans. Inform. Theory,

44:1369–1387, 1998.

[Dan05] C. Dankert. Efficient Simulation of Random Quantum States and Op-

erators. MMath Thesis, University of Waterloo, 2005. arXiv:quant-

ph/0512217.

[DCEL06] C. Dankert, R. Cleve, J. Emerson, and E. Livine. Exact and Approximate

Unitary 2-Designs: Constructions and Applications, 2006. arXiv:quant-

ph/0606161.

[DHL+04] D. P. DiVincenzo, M. Horodecki, D. W. Leung, J. A. Smolin, and B. M.

Terhal. Locking Classical Correlations in Quantum States. Phys. Rev. Lett.,

92(6):067902, 2004. arXiv:quant-ph/0303088.

[DLP01] G. M. D’Ariano and P. Lo Presti. Quantum Tomography for Measuring

Experimentally the Matrix Elements of an Arbitrary Quantum Operation.

Phys. Rev. Lett., 86(19):4195–4198, 2001. arXiv:quant-ph/0012071.

[DLT02] D. DiVincenzo, D. Leung, and B. Terhal. Quantum Data Hiding. IEEE

Trans. Inform. Theory, 48(3):580–598, 2002. arXiv:quant-ph/0103098.

[DN06] P. A. Dickinson and A. Nayak. Approximate Randomization of Quantum

States With Fewer Bits of Key. Quantum Computing: Back Action 2006,

864:18–36, 2006.

[DOP07] O. C. O. Dahlsten, R. Oliveira, and M. B. Plenio. The emergence of typ-

ical entanglement in two-party random processes. Journal of Physics A

Mathematical General, 40:8081–8108, 2007. arXiv:quant-ph/0701125.

[DP06] O. Dahlsten and M. Plenio. Entanglement probability distribution of bi-

partite randomised stabilizer states. Q. Info. Comp., 6(6):527–538, 2006.

arXiv:quant-ph/0511119.

175



[DS93] P. Diaconis and L. Saloff-Coste. Comparison Theorems for Reversible

Markov Chains. Ann. Appl. Probab., 3(3):696–730, 1993.

[DS96] P. Diaconis and L. Saloff-Coste. Logarithmic Sobolev inequalities for finite

Markov chains. Ann. Appl. Probab., 6(3):695–750, 1996.

[ELL05] J. Emerson, E. Livine, and S. Lloyd. Convergence conditions for ran-

dom quantum circuits. Phys. Rev. A, 72(060302), 2005. arXiv:quant-

ph/0503210.

[FK94] S. K. Foong and S. Kanno. Proof of Page’s conjecture on the average

entropy of a subsystem. Phys. Rev. Lett., 72:1148–1151, 1994.

[GAE07] D. Gross, K. Audenaert, and J. Eisert. Evenly distributed unitaries: On the

structure of unitary designs. J. Math. Phys., 48(052104), 2007. arXiv:quant-

ph/0611002.

[GC99] D. Gottesman and I. L. Chuang. Demonstrating the viability of univer-

sal quantum computation using teleportation and single-qubit operations.

Nature, 402:390–393, 1999. arXiv:quant-ph/9908010.

[GE08] D. Gross and J. Eisert. Quantum Margulis Expanders. Q. Info. Comp.,

8(8/9):722–733, 2008. arXiv:0710.0651.

[GFE09] D. Gross, S. T. Flammia, and J. Eisert. Most Quantum States Are Too

Entangled To Be Useful As Computational Resources. Phys. Rev. Lett.,

102(19):190501, 2009. arXiv:0810.4331.

[Gir07] O. Giraud. Distribution of bipartite entanglement for random pure states.

J. Phys. A, 40:2793–2801, 2007. arXiv:quant-ph/0611285.

[Got98] D. Gottesman. Theory of fault-tolerant quantum computation. Phys. Rev.

A, 57(1):127–137, 1998. arXiv:quant-ph/9702029.

[Gro97] L. Grover. Quantum Mechanics Helps in Searching for a Needle in a

Haystack. Phys. Rev. Lett., 79(2):325–328, 1997.

176



[GW86] G. Grimmett and D. Welsh. Probability: An Introduction. Oxford Univer-

sity Press, Oxford, UK, 1986.

[GW98] R. Goodman and N. Wallach. Representations and Invariants of the Clas-

sical Groups. Cambridge University Press, Cambridge, UK, 1998.

[Har08] A. W. Harrow. Quantum expanders from any classical Cayley graph ex-

pander. Q. Info. Comp., 8(8/9):715–721, 2008. arXiv:0709.1142.

[HH08] S. Hallgren and A. W. Harrow. Superpolynomial Speedups Based on Almost

Any Quantum Circuit. In ICALP ’08: Proceedings of the 35th international

colloquium on Automata, Languages and Programming, Part I, pages 782–

795, Berlin, Heidelberg, 2008. Springer-Verlag. arXiv:0805.0007.

[HH09] M. B. Hastings and A. W. Harrow. Classical and Quantum Tensor Product

Expanders. Q. Info. Comp., 9:336, 2009. arXiv:0804.0011.

[HHH06] A. Hayashi, T. Hashimoto, and M. Horibe. Reexamination of optimal

quantum state estimation of pure states. Phys. Rev. A, 72(032325), 2006.

arXiv:quant-ph/0410207.

[HHL04] A. Harrow, P. Hayden, and D. Leung. Superdense Coding of Quantum

States. Phys. Rev. Lett., 92(18):187901, 2004. arXiv:quant-ph/0307221.
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